|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_TRIDIAGONALIZATION_H | 
|  | #define EIGEN_TRIDIAGONALIZATION_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename MatrixType> struct TridiagonalizationMatrixTReturnType; | 
|  | template<typename MatrixType> | 
|  | struct traits<TridiagonalizationMatrixTReturnType<MatrixType> > | 
|  | : public traits<typename MatrixType::PlainObject> | 
|  | { | 
|  | typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix? | 
|  | enum { Flags = 0 }; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType, typename CoeffVectorType> | 
|  | EIGEN_DEVICE_FUNC | 
|  | void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); | 
|  | } | 
|  |  | 
|  | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * | 
|  | * \class Tridiagonalization | 
|  | * | 
|  | * \brief Tridiagonal decomposition of a selfadjoint matrix | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which we are computing the | 
|  | * tridiagonal decomposition; this is expected to be an instantiation of the | 
|  | * Matrix class template. | 
|  | * | 
|  | * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: | 
|  | * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. | 
|  | * | 
|  | * A tridiagonal matrix is a matrix which has nonzero elements only on the | 
|  | * main diagonal and the first diagonal below and above it. The Hessenberg | 
|  | * decomposition of a selfadjoint matrix is in fact a tridiagonal | 
|  | * decomposition. This class is used in SelfAdjointEigenSolver to compute the | 
|  | * eigenvalues and eigenvectors of a selfadjoint matrix. | 
|  | * | 
|  | * Call the function compute() to compute the tridiagonal decomposition of a | 
|  | * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) | 
|  | * constructor which computes the tridiagonal Schur decomposition at | 
|  | * construction time. Once the decomposition is computed, you can use the | 
|  | * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the | 
|  | * decomposition. | 
|  | * | 
|  | * The documentation of Tridiagonalization(const MatrixType&) contains an | 
|  | * example of the typical use of this class. | 
|  | * | 
|  | * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver | 
|  | */ | 
|  | template<typename MatrixType_> class Tridiagonalization | 
|  | { | 
|  | public: | 
|  |  | 
|  | /** \brief Synonym for the template parameter \p MatrixType_. */ | 
|  | typedef MatrixType_ MatrixType; | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  |  | 
|  | enum { | 
|  | Size = MatrixType::RowsAtCompileTime, | 
|  | SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), | 
|  | Options = MatrixType::Options, | 
|  | MaxSize = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) | 
|  | }; | 
|  |  | 
|  | typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; | 
|  | typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType; | 
|  | typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType; | 
|  | typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView; | 
|  | typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType; | 
|  |  | 
|  | typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, | 
|  | typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type, | 
|  | const Diagonal<const MatrixType> | 
|  | >::type DiagonalReturnType; | 
|  |  | 
|  | typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, | 
|  | typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type, | 
|  | const Diagonal<const MatrixType, -1> | 
|  | >::type SubDiagonalReturnType; | 
|  |  | 
|  | /** \brief Return type of matrixQ() */ | 
|  | typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType; | 
|  |  | 
|  | /** \brief Default constructor. | 
|  | * | 
|  | * \param [in]  size  Positive integer, size of the matrix whose tridiagonal | 
|  | * decomposition will be computed. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via compute().  The \p size parameter is only | 
|  | * used as a hint. It is not an error to give a wrong \p size, but it may | 
|  | * impair performance. | 
|  | * | 
|  | * \sa compute() for an example. | 
|  | */ | 
|  | explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) | 
|  | : m_matrix(size,size), | 
|  | m_hCoeffs(size > 1 ? size-1 : 1), | 
|  | m_isInitialized(false) | 
|  | {} | 
|  |  | 
|  | /** \brief Constructor; computes tridiagonal decomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition | 
|  | * is to be computed. | 
|  | * | 
|  | * This constructor calls compute() to compute the tridiagonal decomposition. | 
|  | * | 
|  | * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp | 
|  | * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out | 
|  | */ | 
|  | template<typename InputType> | 
|  | explicit Tridiagonalization(const EigenBase<InputType>& matrix) | 
|  | : m_matrix(matrix.derived()), | 
|  | m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); | 
|  | m_isInitialized = true; | 
|  | } | 
|  |  | 
|  | /** \brief Computes tridiagonal decomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition | 
|  | * is to be computed. | 
|  | * \returns    Reference to \c *this | 
|  | * | 
|  | * The tridiagonal decomposition is computed by bringing the columns of | 
|  | * the matrix successively in the required form using Householder | 
|  | * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes | 
|  | * the size of the given matrix. | 
|  | * | 
|  | * This method reuses of the allocated data in the Tridiagonalization | 
|  | * object, if the size of the matrix does not change. | 
|  | * | 
|  | * Example: \include Tridiagonalization_compute.cpp | 
|  | * Output: \verbinclude Tridiagonalization_compute.out | 
|  | */ | 
|  | template<typename InputType> | 
|  | Tridiagonalization& compute(const EigenBase<InputType>& matrix) | 
|  | { | 
|  | m_matrix = matrix.derived(); | 
|  | m_hCoeffs.resize(matrix.rows()-1, 1); | 
|  | internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the Householder coefficients. | 
|  | * | 
|  | * \returns a const reference to the vector of Householder coefficients | 
|  | * | 
|  | * \pre Either the constructor Tridiagonalization(const MatrixType&) or | 
|  | * the member function compute(const MatrixType&) has been called before | 
|  | * to compute the tridiagonal decomposition of a matrix. | 
|  | * | 
|  | * The Householder coefficients allow the reconstruction of the matrix | 
|  | * \f$ Q \f$ in the tridiagonal decomposition from the packed data. | 
|  | * | 
|  | * Example: \include Tridiagonalization_householderCoefficients.cpp | 
|  | * Output: \verbinclude Tridiagonalization_householderCoefficients.out | 
|  | * | 
|  | * \sa packedMatrix(), \ref Householder_Module "Householder module" | 
|  | */ | 
|  | inline CoeffVectorType householderCoefficients() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); | 
|  | return m_hCoeffs; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the internal representation of the decomposition | 
|  | * | 
|  | *	\returns a const reference to a matrix with the internal representation | 
|  | *	         of the decomposition. | 
|  | * | 
|  | * \pre Either the constructor Tridiagonalization(const MatrixType&) or | 
|  | * the member function compute(const MatrixType&) has been called before | 
|  | * to compute the tridiagonal decomposition of a matrix. | 
|  | * | 
|  | * The returned matrix contains the following information: | 
|  | *  - the strict upper triangular part is equal to the input matrix A. | 
|  | *  - the diagonal and lower sub-diagonal represent the real tridiagonal | 
|  | *    symmetric matrix T. | 
|  | *  - the rest of the lower part contains the Householder vectors that, | 
|  | *    combined with Householder coefficients returned by | 
|  | *    householderCoefficients(), allows to reconstruct the matrix Q as | 
|  | *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. | 
|  | *    Here, the matrices \f$ H_i \f$ are the Householder transformations | 
|  | *       \f$ H_i = (I - h_i v_i v_i^T) \f$ | 
|  | *    where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and | 
|  | *    \f$ v_i \f$ is the Householder vector defined by | 
|  | *       \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ | 
|  | *    with M the matrix returned by this function. | 
|  | * | 
|  | * See LAPACK for further details on this packed storage. | 
|  | * | 
|  | * Example: \include Tridiagonalization_packedMatrix.cpp | 
|  | * Output: \verbinclude Tridiagonalization_packedMatrix.out | 
|  | * | 
|  | * \sa householderCoefficients() | 
|  | */ | 
|  | inline const MatrixType& packedMatrix() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); | 
|  | return m_matrix; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the unitary matrix Q in the decomposition | 
|  | * | 
|  | * \returns object representing the matrix Q | 
|  | * | 
|  | * \pre Either the constructor Tridiagonalization(const MatrixType&) or | 
|  | * the member function compute(const MatrixType&) has been called before | 
|  | * to compute the tridiagonal decomposition of a matrix. | 
|  | * | 
|  | * This function returns a light-weight object of template class | 
|  | * HouseholderSequence. You can either apply it directly to a matrix or | 
|  | * you can convert it to a matrix of type #MatrixType. | 
|  | * | 
|  | * \sa Tridiagonalization(const MatrixType&) for an example, | 
|  | *     matrixT(), class HouseholderSequence | 
|  | */ | 
|  | HouseholderSequenceType matrixQ() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); | 
|  | return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) | 
|  | .setLength(m_matrix.rows() - 1) | 
|  | .setShift(1); | 
|  | } | 
|  |  | 
|  | /** \brief Returns an expression of the tridiagonal matrix T in the decomposition | 
|  | * | 
|  | * \returns expression object representing the matrix T | 
|  | * | 
|  | * \pre Either the constructor Tridiagonalization(const MatrixType&) or | 
|  | * the member function compute(const MatrixType&) has been called before | 
|  | * to compute the tridiagonal decomposition of a matrix. | 
|  | * | 
|  | * Currently, this function can be used to extract the matrix T from internal | 
|  | * data and copy it to a dense matrix object. In most cases, it may be | 
|  | * sufficient to directly use the packed matrix or the vector expressions | 
|  | * returned by diagonal() and subDiagonal() instead of creating a new | 
|  | * dense copy matrix with this function. | 
|  | * | 
|  | * \sa Tridiagonalization(const MatrixType&) for an example, | 
|  | * matrixQ(), packedMatrix(), diagonal(), subDiagonal() | 
|  | */ | 
|  | MatrixTReturnType matrixT() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); | 
|  | return MatrixTReturnType(m_matrix.real()); | 
|  | } | 
|  |  | 
|  | /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. | 
|  | * | 
|  | * \returns expression representing the diagonal of T | 
|  | * | 
|  | * \pre Either the constructor Tridiagonalization(const MatrixType&) or | 
|  | * the member function compute(const MatrixType&) has been called before | 
|  | * to compute the tridiagonal decomposition of a matrix. | 
|  | * | 
|  | * Example: \include Tridiagonalization_diagonal.cpp | 
|  | * Output: \verbinclude Tridiagonalization_diagonal.out | 
|  | * | 
|  | * \sa matrixT(), subDiagonal() | 
|  | */ | 
|  | DiagonalReturnType diagonal() const; | 
|  |  | 
|  | /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. | 
|  | * | 
|  | * \returns expression representing the subdiagonal of T | 
|  | * | 
|  | * \pre Either the constructor Tridiagonalization(const MatrixType&) or | 
|  | * the member function compute(const MatrixType&) has been called before | 
|  | * to compute the tridiagonal decomposition of a matrix. | 
|  | * | 
|  | * \sa diagonal() for an example, matrixT() | 
|  | */ | 
|  | SubDiagonalReturnType subDiagonal() const; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | MatrixType m_matrix; | 
|  | CoeffVectorType m_hCoeffs; | 
|  | bool m_isInitialized; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename Tridiagonalization<MatrixType>::DiagonalReturnType | 
|  | Tridiagonalization<MatrixType>::diagonal() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); | 
|  | return m_matrix.diagonal().real(); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename Tridiagonalization<MatrixType>::SubDiagonalReturnType | 
|  | Tridiagonalization<MatrixType>::subDiagonal() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); | 
|  | return m_matrix.template diagonal<-1>().real(); | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal | 
|  | * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. | 
|  | * | 
|  | * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. | 
|  | *                     On output, the strict upper part is left unchanged, and the lower triangular part | 
|  | *                     represents the T and Q matrices in packed format has detailed below. | 
|  | * \param[out]    hCoeffs returned Householder coefficients (see below) | 
|  | * | 
|  | * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal | 
|  | * and lower sub-diagonal of the matrix \a matA. | 
|  | * The unitary matrix Q is represented in a compact way as a product of | 
|  | * Householder reflectors \f$ H_i \f$ such that: | 
|  | *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. | 
|  | * The Householder reflectors are defined as | 
|  | *       \f$ H_i = (I - h_i v_i v_i^T) \f$ | 
|  | * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and | 
|  | * \f$ v_i \f$ is the Householder vector defined by | 
|  | *       \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. | 
|  | * | 
|  | * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. | 
|  | * | 
|  | * \sa Tridiagonalization::packedMatrix() | 
|  | */ | 
|  | template<typename MatrixType, typename CoeffVectorType> | 
|  | EIGEN_DEVICE_FUNC | 
|  | void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) | 
|  | { | 
|  | using numext::conj; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | Index n = matA.rows(); | 
|  | eigen_assert(n==matA.cols()); | 
|  | eigen_assert(n==hCoeffs.size()+1 || n==1); | 
|  |  | 
|  | for (Index i = 0; i<n-1; ++i) | 
|  | { | 
|  | Index remainingSize = n-i-1; | 
|  | RealScalar beta; | 
|  | Scalar h; | 
|  | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | 
|  |  | 
|  | // Apply similarity transformation to remaining columns, | 
|  | // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1) | 
|  | matA.col(i).coeffRef(i+1) = 1; | 
|  |  | 
|  | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>() | 
|  | * (conj(h) * matA.col(i).tail(remainingSize))); | 
|  |  | 
|  | hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); | 
|  |  | 
|  | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>() | 
|  | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | 
|  |  | 
|  | matA.col(i).coeffRef(i+1) = beta; | 
|  | hCoeffs.coeffRef(i) = h; | 
|  | } | 
|  | } | 
|  |  | 
|  | // forward declaration, implementation at the end of this file | 
|  | template<typename MatrixType, | 
|  | int Size=MatrixType::ColsAtCompileTime, | 
|  | bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex> | 
|  | struct tridiagonalization_inplace_selector; | 
|  |  | 
|  | /** \brief Performs a full tridiagonalization in place | 
|  | * | 
|  | * \param[in,out]  mat  On input, the selfadjoint matrix whose tridiagonal | 
|  | *    decomposition is to be computed. Only the lower triangular part referenced. | 
|  | *    The rest is left unchanged. On output, the orthogonal matrix Q | 
|  | *    in the decomposition if \p extractQ is true. | 
|  | * \param[out]  diag  The diagonal of the tridiagonal matrix T in the | 
|  | *    decomposition. | 
|  | * \param[out]  subdiag  The subdiagonal of the tridiagonal matrix T in | 
|  | *    the decomposition. | 
|  | * \param[in]  extractQ  If true, the orthogonal matrix Q in the | 
|  | *    decomposition is computed and stored in \p mat. | 
|  | * | 
|  | * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place | 
|  | * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real | 
|  | * symmetric tridiagonal matrix. | 
|  | * | 
|  | * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If | 
|  | * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower | 
|  | * part of the matrix \p mat is destroyed. | 
|  | * | 
|  | * The vectors \p diag and \p subdiag are not resized. The function | 
|  | * assumes that they are already of the correct size. The length of the | 
|  | * vector \p diag should equal the number of rows in \p mat, and the | 
|  | * length of the vector \p subdiag should be one left. | 
|  | * | 
|  | * This implementation contains an optimized path for 3-by-3 matrices | 
|  | * which is especially useful for plane fitting. | 
|  | * | 
|  | * \note Currently, it requires two temporary vectors to hold the intermediate | 
|  | * Householder coefficients, and to reconstruct the matrix Q from the Householder | 
|  | * reflectors. | 
|  | * | 
|  | * Example (this uses the same matrix as the example in | 
|  | *    Tridiagonalization::Tridiagonalization(const MatrixType&)): | 
|  | *    \include Tridiagonalization_decomposeInPlace.cpp | 
|  | * Output: \verbinclude Tridiagonalization_decomposeInPlace.out | 
|  | * | 
|  | * \sa class Tridiagonalization | 
|  | */ | 
|  | template<typename MatrixType, typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType> | 
|  | EIGEN_DEVICE_FUNC | 
|  | void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, | 
|  | CoeffVectorType& hcoeffs, bool extractQ) | 
|  | { | 
|  | eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); | 
|  | tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, hcoeffs, extractQ); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * General full tridiagonalization | 
|  | */ | 
|  | template<typename MatrixType, int Size, bool IsComplex> | 
|  | struct tridiagonalization_inplace_selector | 
|  | { | 
|  | typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType; | 
|  | template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType> | 
|  | static EIGEN_DEVICE_FUNC | 
|  | void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType& hCoeffs, bool extractQ) | 
|  | { | 
|  | tridiagonalization_inplace(mat, hCoeffs); | 
|  | diag = mat.diagonal().real(); | 
|  | subdiag = mat.template diagonal<-1>().real(); | 
|  | if(extractQ) | 
|  | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | 
|  | .setLength(mat.rows() - 1) | 
|  | .setShift(1); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \internal | 
|  | * Specialization for 3x3 real matrices. | 
|  | * Especially useful for plane fitting. | 
|  | */ | 
|  | template<typename MatrixType> | 
|  | struct tridiagonalization_inplace_selector<MatrixType,3,false> | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  |  | 
|  | template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType> | 
|  | static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType&, bool extractQ) | 
|  | { | 
|  | using std::sqrt; | 
|  | const RealScalar tol = (std::numeric_limits<RealScalar>::min)(); | 
|  | diag[0] = mat(0,0); | 
|  | RealScalar v1norm2 = numext::abs2(mat(2,0)); | 
|  | if(v1norm2 <= tol) | 
|  | { | 
|  | diag[1] = mat(1,1); | 
|  | diag[2] = mat(2,2); | 
|  | subdiag[0] = mat(1,0); | 
|  | subdiag[1] = mat(2,1); | 
|  | if (extractQ) | 
|  | mat.setIdentity(); | 
|  | } | 
|  | else | 
|  | { | 
|  | RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2); | 
|  | RealScalar invBeta = RealScalar(1)/beta; | 
|  | Scalar m01 = mat(1,0) * invBeta; | 
|  | Scalar m02 = mat(2,0) * invBeta; | 
|  | Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); | 
|  | diag[1] = mat(1,1) + m02*q; | 
|  | diag[2] = mat(2,2) - m02*q; | 
|  | subdiag[0] = beta; | 
|  | subdiag[1] = mat(2,1) - m01 * q; | 
|  | if (extractQ) | 
|  | { | 
|  | mat << 1,   0,    0, | 
|  | 0, m01,  m02, | 
|  | 0, m02, -m01; | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \internal | 
|  | * Trivial specialization for 1x1 matrices | 
|  | */ | 
|  | template<typename MatrixType, bool IsComplex> | 
|  | struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex> | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType> | 
|  | static EIGEN_DEVICE_FUNC | 
|  | void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, CoeffVectorType&, bool extractQ) | 
|  | { | 
|  | diag(0,0) = numext::real(mat(0,0)); | 
|  | if(extractQ) | 
|  | mat(0,0) = Scalar(1); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \internal | 
|  | * \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * \brief Expression type for return value of Tridiagonalization::matrixT() | 
|  | * | 
|  | * \tparam MatrixType type of underlying dense matrix | 
|  | */ | 
|  | template<typename MatrixType> struct TridiagonalizationMatrixTReturnType | 
|  | : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> > | 
|  | { | 
|  | public: | 
|  | /** \brief Constructor. | 
|  | * | 
|  | * \param[in] mat The underlying dense matrix | 
|  | */ | 
|  | TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } | 
|  |  | 
|  | template <typename ResultType> | 
|  | inline void evalTo(ResultType& result) const | 
|  | { | 
|  | result.setZero(); | 
|  | result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); | 
|  | result.diagonal() = m_matrix.diagonal(); | 
|  | result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); | 
|  | } | 
|  |  | 
|  | EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } | 
|  | EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } | 
|  |  | 
|  | protected: | 
|  | typename MatrixType::Nested m_matrix; | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_TRIDIAGONALIZATION_H |