|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_LU_H | 
|  | #define EIGEN_LU_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | template<typename MatrixType_> struct traits<FullPivLU<MatrixType_> > | 
|  | : traits<MatrixType_> | 
|  | { | 
|  | typedef MatrixXpr XprKind; | 
|  | typedef SolverStorage StorageKind; | 
|  | typedef int StorageIndex; | 
|  | enum { Flags = 0 }; | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \ingroup LU_Module | 
|  | * | 
|  | * \class FullPivLU | 
|  | * | 
|  | * \brief LU decomposition of a matrix with complete pivoting, and related features | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which we are computing the LU decomposition | 
|  | * | 
|  | * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is | 
|  | * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is | 
|  | * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU | 
|  | * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any | 
|  | * zeros are at the end. | 
|  | * | 
|  | * This decomposition provides the generic approach to solving systems of linear equations, computing | 
|  | * the rank, invertibility, inverse, kernel, and determinant. | 
|  | * | 
|  | * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD | 
|  | * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, | 
|  | * working with the SVD allows to select the smallest singular values of the matrix, something that | 
|  | * the LU decomposition doesn't see. | 
|  | * | 
|  | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), | 
|  | * permutationP(), permutationQ(). | 
|  | * | 
|  | * As an example, here is how the original matrix can be retrieved: | 
|  | * \include class_FullPivLU.cpp | 
|  | * Output: \verbinclude class_FullPivLU.out | 
|  | * | 
|  | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
|  | * | 
|  | * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() | 
|  | */ | 
|  | template<typename MatrixType_> class FullPivLU | 
|  | : public SolverBase<FullPivLU<MatrixType_> > | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef SolverBase<FullPivLU> Base; | 
|  | friend class SolverBase<FullPivLU>; | 
|  |  | 
|  | EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU) | 
|  | enum { | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType; | 
|  | typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType; | 
|  | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType; | 
|  | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType; | 
|  | typedef typename MatrixType::PlainObject PlainObject; | 
|  |  | 
|  | /** | 
|  | * \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via LU::compute(const MatrixType&). | 
|  | */ | 
|  | FullPivLU(); | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa FullPivLU() | 
|  | */ | 
|  | FullPivLU(Index rows, Index cols); | 
|  |  | 
|  | /** Constructor. | 
|  | * | 
|  | * \param matrix the matrix of which to compute the LU decomposition. | 
|  | *               It is required to be nonzero. | 
|  | */ | 
|  | template<typename InputType> | 
|  | explicit FullPivLU(const EigenBase<InputType>& matrix); | 
|  |  | 
|  | /** \brief Constructs a LU factorization from a given matrix | 
|  | * | 
|  | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. | 
|  | * | 
|  | * \sa FullPivLU(const EigenBase&) | 
|  | */ | 
|  | template<typename InputType> | 
|  | explicit FullPivLU(EigenBase<InputType>& matrix); | 
|  |  | 
|  | /** Computes the LU decomposition of the given matrix. | 
|  | * | 
|  | * \param matrix the matrix of which to compute the LU decomposition. | 
|  | *               It is required to be nonzero. | 
|  | * | 
|  | * \returns a reference to *this | 
|  | */ | 
|  | template<typename InputType> | 
|  | FullPivLU& compute(const EigenBase<InputType>& matrix) { | 
|  | m_lu = matrix.derived(); | 
|  | computeInPlace(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns the LU decomposition matrix: the upper-triangular part is U, the | 
|  | * unit-lower-triangular part is L (at least for square matrices; in the non-square | 
|  | * case, special care is needed, see the documentation of class FullPivLU). | 
|  | * | 
|  | * \sa matrixL(), matrixU() | 
|  | */ | 
|  | inline const MatrixType& matrixLU() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return m_lu; | 
|  | } | 
|  |  | 
|  | /** \returns the number of nonzero pivots in the LU decomposition. | 
|  | * Here nonzero is meant in the exact sense, not in a fuzzy sense. | 
|  | * So that notion isn't really intrinsically interesting, but it is | 
|  | * still useful when implementing algorithms. | 
|  | * | 
|  | * \sa rank() | 
|  | */ | 
|  | inline Index nonzeroPivots() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return m_nonzero_pivots; | 
|  | } | 
|  |  | 
|  | /** \returns the absolute value of the biggest pivot, i.e. the biggest | 
|  | *          diagonal coefficient of U. | 
|  | */ | 
|  | RealScalar maxPivot() const { return m_maxpivot; } | 
|  |  | 
|  | /** \returns the permutation matrix P | 
|  | * | 
|  | * \sa permutationQ() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return m_p; | 
|  | } | 
|  |  | 
|  | /** \returns the permutation matrix Q | 
|  | * | 
|  | * \sa permutationP() | 
|  | */ | 
|  | inline const PermutationQType& permutationQ() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return m_q; | 
|  | } | 
|  |  | 
|  | /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix | 
|  | * will form a basis of the kernel. | 
|  | * | 
|  | * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | * | 
|  | * Example: \include FullPivLU_kernel.cpp | 
|  | * Output: \verbinclude FullPivLU_kernel.out | 
|  | * | 
|  | * \sa image() | 
|  | */ | 
|  | inline const internal::kernel_retval<FullPivLU> kernel() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return internal::kernel_retval<FullPivLU>(*this); | 
|  | } | 
|  |  | 
|  | /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix | 
|  | * will form a basis of the image (column-space). | 
|  | * | 
|  | * \param originalMatrix the original matrix, of which *this is the LU decomposition. | 
|  | *                       The reason why it is needed to pass it here, is that this allows | 
|  | *                       a large optimization, as otherwise this method would need to reconstruct it | 
|  | *                       from the LU decomposition. | 
|  | * | 
|  | * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | * | 
|  | * Example: \include FullPivLU_image.cpp | 
|  | * Output: \verbinclude FullPivLU_image.out | 
|  | * | 
|  | * \sa kernel() | 
|  | */ | 
|  | inline const internal::image_retval<FullPivLU> | 
|  | image(const MatrixType& originalMatrix) const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return internal::image_retval<FullPivLU>(*this, originalMatrix); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \return a solution x to the equation Ax=b, where A is the matrix of which | 
|  | * *this is the LU decomposition. | 
|  | * | 
|  | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, | 
|  | *          the only requirement in order for the equation to make sense is that | 
|  | *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. | 
|  | * | 
|  | * \returns a solution. | 
|  | * | 
|  | * \note_about_checking_solutions | 
|  | * | 
|  | * \note_about_arbitrary_choice_of_solution | 
|  | * \note_about_using_kernel_to_study_multiple_solutions | 
|  | * | 
|  | * Example: \include FullPivLU_solve.cpp | 
|  | * Output: \verbinclude FullPivLU_solve.out | 
|  | * | 
|  | * \sa TriangularView::solve(), kernel(), inverse() | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const Solve<FullPivLU, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const; | 
|  | #endif | 
|  |  | 
|  | /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is | 
|  | the LU decomposition. | 
|  | */ | 
|  | inline RealScalar rcond() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|  | return internal::rcond_estimate_helper(m_l1_norm, *this); | 
|  | } | 
|  |  | 
|  | /** \returns the determinant of the matrix of which | 
|  | * *this is the LU decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the LU decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers | 
|  | *       optimized paths. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * | 
|  | * \sa MatrixBase::determinant() | 
|  | */ | 
|  | typename internal::traits<MatrixType>::Scalar determinant() const; | 
|  |  | 
|  | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), | 
|  | * who need to determine when pivots are to be considered nonzero. This is not used for the | 
|  | * LU decomposition itself. | 
|  | * | 
|  | * When it needs to get the threshold value, Eigen calls threshold(). By default, this | 
|  | * uses a formula to automatically determine a reasonable threshold. | 
|  | * Once you have called the present method setThreshold(const RealScalar&), | 
|  | * your value is used instead. | 
|  | * | 
|  | * \param threshold The new value to use as the threshold. | 
|  | * | 
|  | * A pivot will be considered nonzero if its absolute value is strictly greater than | 
|  | *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ | 
|  | * where maxpivot is the biggest pivot. | 
|  | * | 
|  | * If you want to come back to the default behavior, call setThreshold(Default_t) | 
|  | */ | 
|  | FullPivLU& setThreshold(const RealScalar& threshold) | 
|  | { | 
|  | m_usePrescribedThreshold = true; | 
|  | m_prescribedThreshold = threshold; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Allows to come back to the default behavior, letting Eigen use its default formula for | 
|  | * determining the threshold. | 
|  | * | 
|  | * You should pass the special object Eigen::Default as parameter here. | 
|  | * \code lu.setThreshold(Eigen::Default); \endcode | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | FullPivLU& setThreshold(Default_t) | 
|  | { | 
|  | m_usePrescribedThreshold = false; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Returns the threshold that will be used by certain methods such as rank(). | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | RealScalar threshold() const | 
|  | { | 
|  | eigen_assert(m_isInitialized || m_usePrescribedThreshold); | 
|  | return m_usePrescribedThreshold ? m_prescribedThreshold | 
|  | // this formula comes from experimenting (see "LU precision tuning" thread on the list) | 
|  | // and turns out to be identical to Higham's formula used already in LDLt. | 
|  | : NumTraits<Scalar>::epsilon() * RealScalar(m_lu.diagonalSize()); | 
|  | } | 
|  |  | 
|  | /** \returns the rank of the matrix of which *this is the LU decomposition. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline Index rank() const | 
|  | { | 
|  | using std::abs; | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); | 
|  | Index result = 0; | 
|  | for(Index i = 0; i < m_nonzero_pivots; ++i) | 
|  | result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline Index dimensionOfKernel() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return cols() - rank(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the LU decomposition represents an injective | 
|  | *          linear map, i.e. has trivial kernel; false otherwise. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isInjective() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return rank() == cols(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the LU decomposition represents a surjective | 
|  | *          linear map; false otherwise. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isSurjective() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return rank() == rows(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the LU decomposition is invertible. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isInvertible() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | return isInjective() && (m_lu.rows() == m_lu.cols()); | 
|  | } | 
|  |  | 
|  | /** \returns the inverse of the matrix of which *this is the LU decomposition. | 
|  | * | 
|  | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. | 
|  | *       Use isInvertible() to first determine whether this matrix is invertible. | 
|  | * | 
|  | * \sa MatrixBase::inverse() | 
|  | */ | 
|  | inline const Inverse<FullPivLU> inverse() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); | 
|  | return Inverse<FullPivLU>(*this); | 
|  | } | 
|  |  | 
|  | MatrixType reconstructedMatrix() const; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR | 
|  | inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR | 
|  | inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename RhsType, typename DstType> | 
|  | void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
|  |  | 
|  | template<bool Conjugate, typename RhsType, typename DstType> | 
|  | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  |  | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  |  | 
|  | void computeInPlace(); | 
|  |  | 
|  | MatrixType m_lu; | 
|  | PermutationPType m_p; | 
|  | PermutationQType m_q; | 
|  | IntColVectorType m_rowsTranspositions; | 
|  | IntRowVectorType m_colsTranspositions; | 
|  | Index m_nonzero_pivots; | 
|  | RealScalar m_l1_norm; | 
|  | RealScalar m_maxpivot, m_prescribedThreshold; | 
|  | signed char m_det_pq; | 
|  | bool m_isInitialized, m_usePrescribedThreshold; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | FullPivLU<MatrixType>::FullPivLU() | 
|  | : m_isInitialized(false), m_usePrescribedThreshold(false) | 
|  | { | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols) | 
|  | : m_lu(rows, cols), | 
|  | m_p(rows), | 
|  | m_q(cols), | 
|  | m_rowsTranspositions(rows), | 
|  | m_colsTranspositions(cols), | 
|  | m_isInitialized(false), | 
|  | m_usePrescribedThreshold(false) | 
|  | { | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | template<typename InputType> | 
|  | FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix) | 
|  | : m_lu(matrix.rows(), matrix.cols()), | 
|  | m_p(matrix.rows()), | 
|  | m_q(matrix.cols()), | 
|  | m_rowsTranspositions(matrix.rows()), | 
|  | m_colsTranspositions(matrix.cols()), | 
|  | m_isInitialized(false), | 
|  | m_usePrescribedThreshold(false) | 
|  | { | 
|  | compute(matrix.derived()); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | template<typename InputType> | 
|  | FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix) | 
|  | : m_lu(matrix.derived()), | 
|  | m_p(matrix.rows()), | 
|  | m_q(matrix.cols()), | 
|  | m_rowsTranspositions(matrix.rows()), | 
|  | m_colsTranspositions(matrix.cols()), | 
|  | m_isInitialized(false), | 
|  | m_usePrescribedThreshold(false) | 
|  | { | 
|  | computeInPlace(); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void FullPivLU<MatrixType>::computeInPlace() | 
|  | { | 
|  | // the permutations are stored as int indices, so just to be sure: | 
|  | eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest()); | 
|  |  | 
|  | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); | 
|  |  | 
|  | const Index size = m_lu.diagonalSize(); | 
|  | const Index rows = m_lu.rows(); | 
|  | const Index cols = m_lu.cols(); | 
|  |  | 
|  | // will store the transpositions, before we accumulate them at the end. | 
|  | // can't accumulate on-the-fly because that will be done in reverse order for the rows. | 
|  | m_rowsTranspositions.resize(m_lu.rows()); | 
|  | m_colsTranspositions.resize(m_lu.cols()); | 
|  | Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i | 
|  |  | 
|  | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) | 
|  | m_maxpivot = RealScalar(0); | 
|  |  | 
|  | for(Index k = 0; k < size; ++k) | 
|  | { | 
|  | // First, we need to find the pivot. | 
|  |  | 
|  | // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) | 
|  | Index row_of_biggest_in_corner, col_of_biggest_in_corner; | 
|  | typedef internal::scalar_score_coeff_op<Scalar> Scoring; | 
|  | typedef typename Scoring::result_type Score; | 
|  | Score biggest_in_corner; | 
|  | biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) | 
|  | .unaryExpr(Scoring()) | 
|  | .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); | 
|  | row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, | 
|  | col_of_biggest_in_corner += k; // need to add k to them. | 
|  |  | 
|  | if(biggest_in_corner==Score(0)) | 
|  | { | 
|  | // before exiting, make sure to initialize the still uninitialized transpositions | 
|  | // in a sane state without destroying what we already have. | 
|  | m_nonzero_pivots = k; | 
|  | for(Index i = k; i < size; ++i) | 
|  | { | 
|  | m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i); | 
|  | m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner); | 
|  | if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot; | 
|  |  | 
|  | // Now that we've found the pivot, we need to apply the row/col swaps to | 
|  | // bring it to the location (k,k). | 
|  |  | 
|  | m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner); | 
|  | m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner); | 
|  | if(k != row_of_biggest_in_corner) { | 
|  | m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); | 
|  | ++number_of_transpositions; | 
|  | } | 
|  | if(k != col_of_biggest_in_corner) { | 
|  | m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); | 
|  | ++number_of_transpositions; | 
|  | } | 
|  |  | 
|  | // Now that the pivot is at the right location, we update the remaining | 
|  | // bottom-right corner by Gaussian elimination. | 
|  |  | 
|  | if(k<rows-1) | 
|  | m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k); | 
|  | if(k<size-1) | 
|  | m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1); | 
|  | } | 
|  |  | 
|  | // the main loop is over, we still have to accumulate the transpositions to find the | 
|  | // permutations P and Q | 
|  |  | 
|  | m_p.setIdentity(rows); | 
|  | for(Index k = size-1; k >= 0; --k) | 
|  | m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); | 
|  |  | 
|  | m_q.setIdentity(cols); | 
|  | for(Index k = 0; k < size; ++k) | 
|  | m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); | 
|  |  | 
|  | m_det_pq = (number_of_transpositions%2) ? -1 : 1; | 
|  |  | 
|  | m_isInitialized = true; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix represented by the decomposition, | 
|  | * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$. | 
|  | * This function is provided for debug purposes. */ | 
|  | template<typename MatrixType> | 
|  | MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|  | const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); | 
|  | // LU | 
|  | MatrixType res(m_lu.rows(),m_lu.cols()); | 
|  | // FIXME the .toDenseMatrix() should not be needed... | 
|  | res = m_lu.leftCols(smalldim) | 
|  | .template triangularView<UnitLower>().toDenseMatrix() | 
|  | * m_lu.topRows(smalldim) | 
|  | .template triangularView<Upper>().toDenseMatrix(); | 
|  |  | 
|  | // P^{-1}(LU) | 
|  | res = m_p.inverse() * res; | 
|  |  | 
|  | // (P^{-1}LU)Q^{-1} | 
|  | res = res * m_q.inverse(); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /********* Implementation of kernel() **************************************************/ | 
|  |  | 
|  | namespace internal { | 
|  | template<typename MatrixType_> | 
|  | struct kernel_retval<FullPivLU<MatrixType_> > | 
|  | : kernel_retval_base<FullPivLU<MatrixType_> > | 
|  | { | 
|  | EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<MatrixType_>) | 
|  |  | 
|  | enum { MaxSmallDimAtCompileTime = min_size_prefer_fixed( | 
|  | MatrixType::MaxColsAtCompileTime, | 
|  | MatrixType::MaxRowsAtCompileTime) | 
|  | }; | 
|  |  | 
|  | template<typename Dest> void evalTo(Dest& dst) const | 
|  | { | 
|  | using std::abs; | 
|  | const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); | 
|  | if(dimker == 0) | 
|  | { | 
|  | // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's | 
|  | // avoid crashing/asserting as that depends on floating point calculations. Let's | 
|  | // just return a single column vector filled with zeros. | 
|  | dst.setZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Let us use the following lemma: | 
|  | * | 
|  | * Lemma: If the matrix A has the LU decomposition PAQ = LU, | 
|  | * then Ker A = Q(Ker U). | 
|  | * | 
|  | * Proof: trivial: just keep in mind that P, Q, L are invertible. | 
|  | */ | 
|  |  | 
|  | /* Thus, all we need to do is to compute Ker U, and then apply Q. | 
|  | * | 
|  | * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. | 
|  | * Thus, the diagonal of U ends with exactly | 
|  | * dimKer zero's. Let us use that to construct dimKer linearly | 
|  | * independent vectors in Ker U. | 
|  | */ | 
|  |  | 
|  | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); | 
|  | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); | 
|  | Index p = 0; | 
|  | for(Index i = 0; i < dec().nonzeroPivots(); ++i) | 
|  | if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) | 
|  | pivots.coeffRef(p++) = i; | 
|  | eigen_internal_assert(p == rank()); | 
|  |  | 
|  | // we construct a temporaty trapezoid matrix m, by taking the U matrix and | 
|  | // permuting the rows and cols to bring the nonnegligible pivots to the top of | 
|  | // the main diagonal. We need that to be able to apply our triangular solvers. | 
|  | // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified | 
|  | Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options, | 
|  | MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime> | 
|  | m(dec().matrixLU().block(0, 0, rank(), cols)); | 
|  | for(Index i = 0; i < rank(); ++i) | 
|  | { | 
|  | if(i) m.row(i).head(i).setZero(); | 
|  | m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); | 
|  | } | 
|  | m.block(0, 0, rank(), rank()); | 
|  | m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero(); | 
|  | for(Index i = 0; i < rank(); ++i) | 
|  | m.col(i).swap(m.col(pivots.coeff(i))); | 
|  |  | 
|  | // ok, we have our trapezoid matrix, we can apply the triangular solver. | 
|  | // notice that the math behind this suggests that we should apply this to the | 
|  | // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. | 
|  | m.topLeftCorner(rank(), rank()) | 
|  | .template triangularView<Upper>().solveInPlace( | 
|  | m.topRightCorner(rank(), dimker) | 
|  | ); | 
|  |  | 
|  | // now we must undo the column permutation that we had applied! | 
|  | for(Index i = rank()-1; i >= 0; --i) | 
|  | m.col(i).swap(m.col(pivots.coeff(i))); | 
|  |  | 
|  | // see the negative sign in the next line, that's what we were talking about above. | 
|  | for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); | 
|  | for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); | 
|  | for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /***** Implementation of image() *****************************************************/ | 
|  |  | 
|  | template<typename MatrixType_> | 
|  | struct image_retval<FullPivLU<MatrixType_> > | 
|  | : image_retval_base<FullPivLU<MatrixType_> > | 
|  | { | 
|  | EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<MatrixType_>) | 
|  |  | 
|  | enum { MaxSmallDimAtCompileTime = min_size_prefer_fixed( | 
|  | MatrixType::MaxColsAtCompileTime, | 
|  | MatrixType::MaxRowsAtCompileTime) | 
|  | }; | 
|  |  | 
|  | template<typename Dest> void evalTo(Dest& dst) const | 
|  | { | 
|  | using std::abs; | 
|  | if(rank() == 0) | 
|  | { | 
|  | // The Image is just {0}, so it doesn't have a basis properly speaking, but let's | 
|  | // avoid crashing/asserting as that depends on floating point calculations. Let's | 
|  | // just return a single column vector filled with zeros. | 
|  | dst.setZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); | 
|  | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); | 
|  | Index p = 0; | 
|  | for(Index i = 0; i < dec().nonzeroPivots(); ++i) | 
|  | if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) | 
|  | pivots.coeffRef(p++) = i; | 
|  | eigen_internal_assert(p == rank()); | 
|  |  | 
|  | for(Index i = 0; i < rank(); ++i) | 
|  | dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /***** Implementation of solve() *****************************************************/ | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename MatrixType_> | 
|  | template<typename RhsType, typename DstType> | 
|  | void FullPivLU<MatrixType_>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
|  | { | 
|  | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. | 
|  | * So we proceed as follows: | 
|  | * Step 1: compute c = P * rhs. | 
|  | * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. | 
|  | * Step 3: replace c by the solution x to Ux = c. May or may not exist. | 
|  | * Step 4: result = Q * c; | 
|  | */ | 
|  |  | 
|  | const Index rows = this->rows(), | 
|  | cols = this->cols(), | 
|  | nonzero_pivots = this->rank(); | 
|  | const Index smalldim = (std::min)(rows, cols); | 
|  |  | 
|  | if(nonzero_pivots == 0) | 
|  | { | 
|  | dst.setZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); | 
|  |  | 
|  | // Step 1 | 
|  | c = permutationP() * rhs; | 
|  |  | 
|  | // Step 2 | 
|  | m_lu.topLeftCorner(smalldim,smalldim) | 
|  | .template triangularView<UnitLower>() | 
|  | .solveInPlace(c.topRows(smalldim)); | 
|  | if(rows>cols) | 
|  | c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols); | 
|  |  | 
|  | // Step 3 | 
|  | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) | 
|  | .template triangularView<Upper>() | 
|  | .solveInPlace(c.topRows(nonzero_pivots)); | 
|  |  | 
|  | // Step 4 | 
|  | for(Index i = 0; i < nonzero_pivots; ++i) | 
|  | dst.row(permutationQ().indices().coeff(i)) = c.row(i); | 
|  | for(Index i = nonzero_pivots; i < m_lu.cols(); ++i) | 
|  | dst.row(permutationQ().indices().coeff(i)).setZero(); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType_> | 
|  | template<bool Conjugate, typename RhsType, typename DstType> | 
|  | void FullPivLU<MatrixType_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const | 
|  | { | 
|  | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}, | 
|  | * and since permutations are real and unitary, we can write this | 
|  | * as   A^T = Q U^T L^T P, | 
|  | * So we proceed as follows: | 
|  | * Step 1: compute c = Q^T rhs. | 
|  | * Step 2: replace c by the solution x to U^T x = c. May or may not exist. | 
|  | * Step 3: replace c by the solution x to L^T x = c. | 
|  | * Step 4: result = P^T c. | 
|  | * If Conjugate is true, replace "^T" by "^*" above. | 
|  | */ | 
|  |  | 
|  | const Index rows = this->rows(), cols = this->cols(), | 
|  | nonzero_pivots = this->rank(); | 
|  | const Index smalldim = (std::min)(rows, cols); | 
|  |  | 
|  | if(nonzero_pivots == 0) | 
|  | { | 
|  | dst.setZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); | 
|  |  | 
|  | // Step 1 | 
|  | c = permutationQ().inverse() * rhs; | 
|  |  | 
|  | // Step 2 | 
|  | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) | 
|  | .template triangularView<Upper>() | 
|  | .transpose() | 
|  | .template conjugateIf<Conjugate>() | 
|  | .solveInPlace(c.topRows(nonzero_pivots)); | 
|  |  | 
|  | // Step 3 | 
|  | m_lu.topLeftCorner(smalldim, smalldim) | 
|  | .template triangularView<UnitLower>() | 
|  | .transpose() | 
|  | .template conjugateIf<Conjugate>() | 
|  | .solveInPlace(c.topRows(smalldim)); | 
|  |  | 
|  | // Step 4 | 
|  | PermutationPType invp = permutationP().inverse().eval(); | 
|  | for(Index i = 0; i < smalldim; ++i) | 
|  | dst.row(invp.indices().coeff(i)) = c.row(i); | 
|  | for(Index i = smalldim; i < rows; ++i) | 
|  | dst.row(invp.indices().coeff(i)).setZero(); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  |  | 
|  | /***** Implementation of inverse() *****************************************************/ | 
|  | template<typename DstXprType, typename MatrixType> | 
|  | struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense> | 
|  | { | 
|  | typedef FullPivLU<MatrixType> LuType; | 
|  | typedef Inverse<LuType> SrcXprType; | 
|  | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &) | 
|  | { | 
|  | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); | 
|  | } | 
|  | }; | 
|  | } // end namespace internal | 
|  |  | 
|  | /******* MatrixBase methods *****************************************************************/ | 
|  |  | 
|  | /** \lu_module | 
|  | * | 
|  | * \return the full-pivoting LU decomposition of \c *this. | 
|  | * | 
|  | * \sa class FullPivLU | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const FullPivLU<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::fullPivLu() const | 
|  | { | 
|  | return FullPivLU<PlainObject>(eval()); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_LU_H |