| // // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | // This file is modified from the colamd/symamd library. The copyright is below | 
 |  | 
 | //   The authors of the code itself are Stefan I. Larimore and Timothy A. | 
 | //   Davis (davis@cise.ufl.edu), University of Florida.  The algorithm was | 
 | //   developed in collaboration with John Gilbert, Xerox PARC, and Esmond | 
 | //   Ng, Oak Ridge National Laboratory. | 
 | // | 
 | //     Date: | 
 | // | 
 | //   September 8, 2003.  Version 2.3. | 
 | // | 
 | //     Acknowledgements: | 
 | // | 
 | //   This work was supported by the National Science Foundation, under | 
 | //   grants DMS-9504974 and DMS-9803599. | 
 | // | 
 | //     Notice: | 
 | // | 
 | //   Copyright (c) 1998-2003 by the University of Florida. | 
 | //   All Rights Reserved. | 
 | // | 
 | //   THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY | 
 | //   EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK. | 
 | // | 
 | //   Permission is hereby granted to use, copy, modify, and/or distribute | 
 | //   this program, provided that the Copyright, this License, and the | 
 | //   Availability of the original version is retained on all copies and made | 
 | //   accessible to the end-user of any code or package that includes COLAMD | 
 | //   or any modified version of COLAMD. | 
 | // | 
 | //     Availability: | 
 | // | 
 | //   The colamd/symamd library is available at | 
 | // | 
 | //       http://www.suitesparse.com | 
 |  | 
 |  | 
 | #ifndef EIGEN_COLAMD_H | 
 | #define EIGEN_COLAMD_H | 
 |  | 
 | namespace internal { | 
 |  | 
 | namespace Colamd { | 
 |  | 
 | /* Ensure that debugging is turned off: */ | 
 | #ifndef COLAMD_NDEBUG | 
 | #define COLAMD_NDEBUG | 
 | #endif /* NDEBUG */ | 
 |  | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === Knob and statistics definitions ====================================== */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* size of the knobs [ ] array.  Only knobs [0..1] are currently used. */ | 
 | const int NKnobs = 20; | 
 |  | 
 | /* number of output statistics.  Only stats [0..6] are currently used. */ | 
 | const int NStats = 20; | 
 |  | 
 | /* Indices into knobs and stats array. */ | 
 | enum KnobsStatsIndex { | 
 |   /* knobs [0] and stats [0]: dense row knob and output statistic. */ | 
 |   DenseRow = 0, | 
 |  | 
 |   /* knobs [1] and stats [1]: dense column knob and output statistic. */ | 
 |   DenseCol = 1, | 
 |  | 
 |   /* stats [2]: memory defragmentation count output statistic */ | 
 |   DefragCount = 2, | 
 |  | 
 |   /* stats [3]: colamd status:  zero OK, > 0 warning or notice, < 0 error */ | 
 |   Status = 3, | 
 |  | 
 |   /* stats [4..6]: error info, or info on jumbled columns */ | 
 |   Info1 = 4, | 
 |   Info2 = 5, | 
 |   Info3 = 6 | 
 | }; | 
 |  | 
 | /* error codes returned in stats [3]: */ | 
 | enum Status { | 
 |   Ok = 0, | 
 |   OkButJumbled = 1, | 
 |   ErrorANotPresent = -1, | 
 |   ErrorPNotPresent = -2, | 
 |   ErrorNrowNegative = -3, | 
 |   ErrorNcolNegative = -4, | 
 |   ErrorNnzNegative = -5, | 
 |   ErrorP0Nonzero = -6, | 
 |   ErrorATooSmall = -7, | 
 |   ErrorColLengthNegative = -8, | 
 |   ErrorRowIndexOutOfBounds = -9, | 
 |   ErrorOutOfMemory = -10, | 
 |   ErrorInternalError = -999 | 
 | }; | 
 | /* ========================================================================== */ | 
 | /* === Definitions ========================================================== */ | 
 | /* ========================================================================== */ | 
 |  | 
 | template <typename IndexType> | 
 | IndexType ones_complement(const IndexType r) { | 
 |   return (-(r)-1); | 
 | } | 
 |  | 
 | /* -------------------------------------------------------------------------- */ | 
 | const int Empty = -1; | 
 |  | 
 | /* Row and column status */ | 
 | enum RowColumnStatus { | 
 |   Alive = 0, | 
 |   Dead = -1 | 
 | }; | 
 |  | 
 | /* Column status */ | 
 | enum ColumnStatus { | 
 |   DeadPrincipal = -1, | 
 |   DeadNonPrincipal = -2 | 
 | }; | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === Colamd reporting mechanism =========================================== */ | 
 | /* ========================================================================== */ | 
 |  | 
 | // == Row and Column structures == | 
 | template <typename IndexType> | 
 | struct ColStructure | 
 | { | 
 |   IndexType start ;   /* index for A of first row in this column, or Dead */ | 
 |   /* if column is dead */ | 
 |   IndexType length ;  /* number of rows in this column */ | 
 |   union | 
 |   { | 
 |     IndexType thickness ; /* number of original columns represented by this */ | 
 |     /* col, if the column is alive */ | 
 |     IndexType parent ;  /* parent in parent tree super-column structure, if */ | 
 |     /* the column is dead */ | 
 |   } shared1 ; | 
 |   union | 
 |   { | 
 |     IndexType score ; /* the score used to maintain heap, if col is alive */ | 
 |     IndexType order ; /* pivot ordering of this column, if col is dead */ | 
 |   } shared2 ; | 
 |   union | 
 |   { | 
 |     IndexType headhash ;  /* head of a hash bucket, if col is at the head of */ | 
 |     /* a degree list */ | 
 |     IndexType hash ;  /* hash value, if col is not in a degree list */ | 
 |     IndexType prev ;  /* previous column in degree list, if col is in a */ | 
 |     /* degree list (but not at the head of a degree list) */ | 
 |   } shared3 ; | 
 |   union | 
 |   { | 
 |     IndexType degree_next ; /* next column, if col is in a degree list */ | 
 |     IndexType hash_next ;   /* next column, if col is in a hash list */ | 
 |   } shared4 ; | 
 |  | 
 |   inline bool is_dead() const { return start < Alive; } | 
 |  | 
 |   inline bool is_alive() const { return start >= Alive; } | 
 |  | 
 |   inline bool is_dead_principal() const { return start == DeadPrincipal; } | 
 |  | 
 |   inline void kill_principal() { start = DeadPrincipal; } | 
 |  | 
 |   inline void kill_non_principal() { start = DeadNonPrincipal; } | 
 |  | 
 | }; | 
 |  | 
 | template <typename IndexType> | 
 | struct RowStructure | 
 | { | 
 |   IndexType start ;   /* index for A of first col in this row */ | 
 |   IndexType length ;  /* number of principal columns in this row */ | 
 |   union | 
 |   { | 
 |     IndexType degree ;  /* number of principal & non-principal columns in row */ | 
 |     IndexType p ;   /* used as a row pointer in init_rows_cols () */ | 
 |   } shared1 ; | 
 |   union | 
 |   { | 
 |     IndexType mark ;  /* for computing set differences and marking dead rows*/ | 
 |     IndexType first_column ;/* first column in row (used in garbage collection) */ | 
 |   } shared2 ; | 
 |  | 
 |   inline bool is_dead() const { return shared2.mark < Alive; } | 
 |  | 
 |   inline bool is_alive() const { return shared2.mark >= Alive; } | 
 |  | 
 |   inline void kill() { shared2.mark = Dead; } | 
 |  | 
 | }; | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === Colamd recommended memory size ======================================= */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* | 
 |   The recommended length Alen of the array A passed to colamd is given by | 
 |   the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro.  It returns -1 if any | 
 |   argument is negative.  2*nnz space is required for the row and column | 
 |   indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is | 
 |   required for the Col and Row arrays, respectively, which are internal to | 
 |   colamd.  An additional n_col space is the minimal amount of "elbow room", | 
 |   and nnz/5 more space is recommended for run time efficiency. | 
 |  | 
 |   This macro is not needed when using symamd. | 
 |  | 
 |   Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid | 
 |   gcc -pedantic warning messages. | 
 | */ | 
 | template <typename IndexType> | 
 | inline IndexType colamd_c(IndexType n_col) | 
 | { return IndexType( ((n_col) + 1) * sizeof (ColStructure<IndexType>) / sizeof (IndexType) ) ; } | 
 |  | 
 | template <typename IndexType> | 
 | inline IndexType  colamd_r(IndexType n_row) | 
 | { return IndexType(((n_row) + 1) * sizeof (RowStructure<IndexType>) / sizeof (IndexType)); } | 
 |  | 
 | // Prototypes of non-user callable routines | 
 | template <typename IndexType> | 
 | static IndexType init_rows_cols (IndexType n_row, IndexType n_col, RowStructure<IndexType> Row [], ColStructure<IndexType> col [], IndexType A [], IndexType p [], IndexType stats[NStats] ); | 
 |  | 
 | template <typename IndexType> | 
 | static void init_scoring (IndexType n_row, IndexType n_col, RowStructure<IndexType> Row [], ColStructure<IndexType> Col [], IndexType A [], IndexType head [], double knobs[NKnobs], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg); | 
 |  | 
 | template <typename IndexType> | 
 | static IndexType find_ordering (IndexType n_row, IndexType n_col, IndexType Alen, RowStructure<IndexType> Row [], ColStructure<IndexType> Col [], IndexType A [], IndexType head [], IndexType n_col2, IndexType max_deg, IndexType pfree); | 
 |  | 
 | template <typename IndexType> | 
 | static void order_children (IndexType n_col, ColStructure<IndexType> Col [], IndexType p []); | 
 |  | 
 | template <typename IndexType> | 
 | static void detect_super_cols (ColStructure<IndexType> Col [], IndexType A [], IndexType head [], IndexType row_start, IndexType row_length ) ; | 
 |  | 
 | template <typename IndexType> | 
 | static IndexType garbage_collection (IndexType n_row, IndexType n_col, RowStructure<IndexType> Row [], ColStructure<IndexType> Col [], IndexType A [], IndexType *pfree) ; | 
 |  | 
 | template <typename IndexType> | 
 | static inline  IndexType clear_mark (IndexType n_row, RowStructure<IndexType> Row [] ) ; | 
 |  | 
 | /* === No debugging ========================================================= */ | 
 |  | 
 | #define COLAMD_DEBUG0(params) ; | 
 | #define COLAMD_DEBUG1(params) ; | 
 | #define COLAMD_DEBUG2(params) ; | 
 | #define COLAMD_DEBUG3(params) ; | 
 | #define COLAMD_DEBUG4(params) ; | 
 |  | 
 | #define COLAMD_ASSERT(expression) ((void) 0) | 
 |  | 
 |  | 
 | /** | 
 |  * \brief Returns the recommended value of Alen | 
 |  * | 
 |  * Returns recommended value of Alen for use by colamd. | 
 |  * Returns -1 if any input argument is negative. | 
 |  * The use of this routine or macro is optional. | 
 |  * Note that the macro uses its arguments   more than once, | 
 |  * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED. | 
 |  * | 
 |  * \param nnz nonzeros in A | 
 |  * \param n_row number of rows in A | 
 |  * \param n_col number of columns in A | 
 |  * \return recommended value of Alen for use by colamd | 
 |  */ | 
 | template <typename IndexType> | 
 | inline IndexType recommended ( IndexType nnz, IndexType n_row, IndexType n_col) | 
 | { | 
 |   if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0) | 
 |     return (-1); | 
 |   else | 
 |     return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5)); | 
 | } | 
 |  | 
 | /** | 
 |  * \brief set default parameters  The use of this routine is optional. | 
 |  * | 
 |  * Colamd: rows with more than (knobs [DenseRow] * n_col) | 
 |  * entries are removed prior to ordering.  Columns with more than | 
 |  * (knobs [DenseCol] * n_row) entries are removed prior to | 
 |  * ordering, and placed last in the output column ordering. | 
 |  * | 
 |  * DenseRow and DenseCol are defined as 0 and 1, | 
 |  * respectively, in colamd.h.  Default values of these two knobs | 
 |  * are both 0.5.  Currently, only knobs [0] and knobs [1] are | 
 |  * used, but future versions may use more knobs.  If so, they will | 
 |  * be properly set to their defaults by the future version of | 
 |  * colamd_set_defaults, so that the code that calls colamd will | 
 |  * not need to change, assuming that you either use | 
 |  * colamd_set_defaults, or pass a (double *) NULL pointer as the | 
 |  * knobs array to colamd or symamd. | 
 |  * | 
 |  * \param knobs parameter settings for colamd | 
 |  */ | 
 |  | 
 | static inline void set_defaults(double knobs[NKnobs]) | 
 | { | 
 |   /* === Local variables ================================================== */ | 
 |  | 
 |   int i ; | 
 |  | 
 |   if (!knobs) | 
 |   { | 
 |     return ;      /* no knobs to initialize */ | 
 |   } | 
 |   for (i = 0 ; i < NKnobs ; i++) | 
 |   { | 
 |     knobs [i] = 0 ; | 
 |   } | 
 |   knobs [Colamd::DenseRow] = 0.5 ;  /* ignore rows over 50% dense */ | 
 |   knobs [Colamd::DenseCol] = 0.5 ;  /* ignore columns over 50% dense */ | 
 | } | 
 |  | 
 | /** | 
 |  * \brief  Computes a column ordering using the column approximate minimum degree ordering | 
 |  * | 
 |  * Computes a column ordering (Q) of A such that P(AQ)=LU or | 
 |  * (AQ)'AQ=LL' have less fill-in and require fewer floating point | 
 |  * operations than factorizing the unpermuted matrix A or A'A, | 
 |  * respectively. | 
 |  * | 
 |  * | 
 |  * \param n_row number of rows in A | 
 |  * \param n_col number of columns in A | 
 |  * \param Alen, size of the array A | 
 |  * \param A row indices of the matrix, of size ALen | 
 |  * \param p column pointers of A, of size n_col+1 | 
 |  * \param knobs parameter settings for colamd | 
 |  * \param stats colamd output statistics and error codes | 
 |  */ | 
 | template <typename IndexType> | 
 | static bool compute_ordering(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[NKnobs], IndexType stats[NStats]) | 
 | { | 
 |   /* === Local variables ================================================== */ | 
 |  | 
 |   IndexType i ;     /* loop index */ | 
 |   IndexType nnz ;     /* nonzeros in A */ | 
 |   IndexType Row_size ;    /* size of Row [], in integers */ | 
 |   IndexType Col_size ;    /* size of Col [], in integers */ | 
 |   IndexType need ;      /* minimum required length of A */ | 
 |   Colamd::RowStructure<IndexType> *Row ;   /* pointer into A of Row [0..n_row] array */ | 
 |   Colamd::ColStructure<IndexType> *Col ;   /* pointer into A of Col [0..n_col] array */ | 
 |   IndexType n_col2 ;    /* number of non-dense, non-empty columns */ | 
 |   IndexType n_row2 ;    /* number of non-dense, non-empty rows */ | 
 |   IndexType ngarbage ;    /* number of garbage collections performed */ | 
 |   IndexType max_deg ;   /* maximum row degree */ | 
 |   double default_knobs [NKnobs] ; /* default knobs array */ | 
 |  | 
 |  | 
 |   /* === Check the input arguments ======================================== */ | 
 |  | 
 |   if (!stats) | 
 |   { | 
 |     COLAMD_DEBUG0 (("colamd: stats not present\n")) ; | 
 |     return (false) ; | 
 |   } | 
 |   for (i = 0 ; i < NStats ; i++) | 
 |   { | 
 |     stats [i] = 0 ; | 
 |   } | 
 |   stats [Colamd::Status] = Colamd::Ok ; | 
 |   stats [Colamd::Info1] = -1 ; | 
 |   stats [Colamd::Info2] = -1 ; | 
 |  | 
 |   if (!A)   /* A is not present */ | 
 |   { | 
 |     stats [Colamd::Status] = Colamd::ErrorANotPresent ; | 
 |     COLAMD_DEBUG0 (("colamd: A not present\n")) ; | 
 |     return (false) ; | 
 |   } | 
 |  | 
 |   if (!p)   /* p is not present */ | 
 |   { | 
 |     stats [Colamd::Status] = Colamd::ErrorPNotPresent ; | 
 |     COLAMD_DEBUG0 (("colamd: p not present\n")) ; | 
 |     return (false) ; | 
 |   } | 
 |  | 
 |   if (n_row < 0)  /* n_row must be >= 0 */ | 
 |   { | 
 |     stats [Colamd::Status] = Colamd::ErrorNrowNegative ; | 
 |     stats [Colamd::Info1] = n_row ; | 
 |     COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ; | 
 |     return (false) ; | 
 |   } | 
 |  | 
 |   if (n_col < 0)  /* n_col must be >= 0 */ | 
 |   { | 
 |     stats [Colamd::Status] = Colamd::ErrorNcolNegative ; | 
 |     stats [Colamd::Info1] = n_col ; | 
 |     COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ; | 
 |     return (false) ; | 
 |   } | 
 |  | 
 |   nnz = p [n_col] ; | 
 |   if (nnz < 0)  /* nnz must be >= 0 */ | 
 |   { | 
 |     stats [Colamd::Status] = Colamd::ErrorNnzNegative ; | 
 |     stats [Colamd::Info1] = nnz ; | 
 |     COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ; | 
 |     return (false) ; | 
 |   } | 
 |  | 
 |   if (p [0] != 0) | 
 |   { | 
 |     stats [Colamd::Status] = Colamd::ErrorP0Nonzero ; | 
 |     stats [Colamd::Info1] = p [0] ; | 
 |     COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ; | 
 |     return (false) ; | 
 |   } | 
 |  | 
 |   /* === If no knobs, set default knobs =================================== */ | 
 |  | 
 |   if (!knobs) | 
 |   { | 
 |     set_defaults (default_knobs) ; | 
 |     knobs = default_knobs ; | 
 |   } | 
 |  | 
 |   /* === Allocate the Row and Col arrays from array A ===================== */ | 
 |  | 
 |   Col_size = colamd_c (n_col) ; | 
 |   Row_size = colamd_r (n_row) ; | 
 |   need = 2*nnz + n_col + Col_size + Row_size ; | 
 |  | 
 |   if (need > Alen) | 
 |   { | 
 |     /* not enough space in array A to perform the ordering */ | 
 |     stats [Colamd::Status] = Colamd::ErrorATooSmall ; | 
 |     stats [Colamd::Info1] = need ; | 
 |     stats [Colamd::Info2] = Alen ; | 
 |     COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen)); | 
 |     return (false) ; | 
 |   } | 
 |  | 
 |   Alen -= Col_size + Row_size ; | 
 |   Col = (ColStructure<IndexType> *) &A [Alen] ; | 
 |   Row = (RowStructure<IndexType> *) &A [Alen + Col_size] ; | 
 |  | 
 |   /* === Construct the row and column data structures ===================== */ | 
 |  | 
 |   if (!Colamd::init_rows_cols (n_row, n_col, Row, Col, A, p, stats)) | 
 |   { | 
 |     /* input matrix is invalid */ | 
 |     COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ; | 
 |     return (false) ; | 
 |   } | 
 |  | 
 |   /* === Initialize scores, kill dense rows/columns ======================= */ | 
 |  | 
 |   Colamd::init_scoring (n_row, n_col, Row, Col, A, p, knobs, | 
 | 		&n_row2, &n_col2, &max_deg) ; | 
 |  | 
 |   /* === Order the supercolumns =========================================== */ | 
 |  | 
 |   ngarbage = Colamd::find_ordering (n_row, n_col, Alen, Row, Col, A, p, | 
 | 			    n_col2, max_deg, 2*nnz) ; | 
 |  | 
 |   /* === Order the non-principal columns ================================== */ | 
 |  | 
 |   Colamd::order_children (n_col, Col, p) ; | 
 |  | 
 |   /* === Return statistics in stats ======================================= */ | 
 |  | 
 |   stats [Colamd::DenseRow] = n_row - n_row2 ; | 
 |   stats [Colamd::DenseCol] = n_col - n_col2 ; | 
 |   stats [Colamd::DefragCount] = ngarbage ; | 
 |   COLAMD_DEBUG0 (("colamd: done.\n")) ; | 
 |   return (true) ; | 
 | } | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === NON-USER-CALLABLE ROUTINES: ========================================== */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* There are no user-callable routines beyond this point in the file */ | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === init_rows_cols ======================================================= */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* | 
 |   Takes the column form of the matrix in A and creates the row form of the | 
 |   matrix.  Also, row and column attributes are stored in the Col and Row | 
 |   structs.  If the columns are un-sorted or contain duplicate row indices, | 
 |   this routine will also sort and remove duplicate row indices from the | 
 |   column form of the matrix.  Returns false if the matrix is invalid, | 
 |   true otherwise.  Not user-callable. | 
 | */ | 
 | template <typename IndexType> | 
 | static IndexType init_rows_cols  /* returns true if OK, or false otherwise */ | 
 |   ( | 
 |     /* === Parameters ======================================================= */ | 
 |  | 
 |     IndexType n_row,      /* number of rows of A */ | 
 |     IndexType n_col,      /* number of columns of A */ | 
 |     RowStructure<IndexType> Row [],    /* of size n_row+1 */ | 
 |     ColStructure<IndexType> Col [],    /* of size n_col+1 */ | 
 |     IndexType A [],     /* row indices of A, of size Alen */ | 
 |     IndexType p [],     /* pointers to columns in A, of size n_col+1 */ | 
 |     IndexType stats [NStats]  /* colamd statistics */ | 
 |     ) | 
 | { | 
 |   /* === Local variables ================================================== */ | 
 |  | 
 |   IndexType col ;     /* a column index */ | 
 |   IndexType row ;     /* a row index */ | 
 |   IndexType *cp ;     /* a column pointer */ | 
 |   IndexType *cp_end ;   /* a pointer to the end of a column */ | 
 |   IndexType *rp ;     /* a row pointer */ | 
 |   IndexType *rp_end ;   /* a pointer to the end of a row */ | 
 |   IndexType last_row ;    /* previous row */ | 
 |  | 
 |   /* === Initialize columns, and check column pointers ==================== */ | 
 |  | 
 |   for (col = 0 ; col < n_col ; col++) | 
 |   { | 
 |     Col [col].start = p [col] ; | 
 |     Col [col].length = p [col+1] - p [col] ; | 
 |  | 
 |     if ((Col [col].length) < 0) // extra parentheses to work-around gcc bug 10200 | 
 |     { | 
 |       /* column pointers must be non-decreasing */ | 
 |       stats [Colamd::Status] = Colamd::ErrorColLengthNegative ; | 
 |       stats [Colamd::Info1] = col ; | 
 |       stats [Colamd::Info2] = Col [col].length ; | 
 |       COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ; | 
 |       return (false) ; | 
 |     } | 
 |  | 
 |     Col [col].shared1.thickness = 1 ; | 
 |     Col [col].shared2.score = 0 ; | 
 |     Col [col].shared3.prev = Empty ; | 
 |     Col [col].shared4.degree_next = Empty ; | 
 |   } | 
 |  | 
 |   /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ | 
 |  | 
 |   /* === Scan columns, compute row degrees, and check row indices ========= */ | 
 |  | 
 |   stats [Info3] = 0 ;  /* number of duplicate or unsorted row indices*/ | 
 |  | 
 |   for (row = 0 ; row < n_row ; row++) | 
 |   { | 
 |     Row [row].length = 0 ; | 
 |     Row [row].shared2.mark = -1 ; | 
 |   } | 
 |  | 
 |   for (col = 0 ; col < n_col ; col++) | 
 |   { | 
 |     last_row = -1 ; | 
 |  | 
 |     cp = &A [p [col]] ; | 
 |     cp_end = &A [p [col+1]] ; | 
 |  | 
 |     while (cp < cp_end) | 
 |     { | 
 |       row = *cp++ ; | 
 |  | 
 |       /* make sure row indices within range */ | 
 |       if (row < 0 || row >= n_row) | 
 |       { | 
 | 	stats [Colamd::Status] = Colamd::ErrorRowIndexOutOfBounds ; | 
 | 	stats [Colamd::Info1] = col ; | 
 | 	stats [Colamd::Info2] = row ; | 
 | 	stats [Colamd::Info3] = n_row ; | 
 | 	COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ; | 
 | 	return (false) ; | 
 |       } | 
 |  | 
 |       if (row <= last_row || Row [row].shared2.mark == col) | 
 |       { | 
 | 	/* row index are unsorted or repeated (or both), thus col */ | 
 | 	/* is jumbled.  This is a notice, not an error condition. */ | 
 | 	stats [Colamd::Status] = Colamd::OkButJumbled ; | 
 | 	stats [Colamd::Info1] = col ; | 
 | 	stats [Colamd::Info2] = row ; | 
 | 	(stats [Colamd::Info3]) ++ ; | 
 | 	COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col)); | 
 |       } | 
 |  | 
 |       if (Row [row].shared2.mark != col) | 
 |       { | 
 | 	Row [row].length++ ; | 
 |       } | 
 |       else | 
 |       { | 
 | 	/* this is a repeated entry in the column, */ | 
 | 	/* it will be removed */ | 
 | 	Col [col].length-- ; | 
 |       } | 
 |  | 
 |       /* mark the row as having been seen in this column */ | 
 |       Row [row].shared2.mark = col ; | 
 |  | 
 |       last_row = row ; | 
 |     } | 
 |   } | 
 |  | 
 |   /* === Compute row pointers ============================================= */ | 
 |  | 
 |   /* row form of the matrix starts directly after the column */ | 
 |   /* form of matrix in A */ | 
 |   Row [0].start = p [n_col] ; | 
 |   Row [0].shared1.p = Row [0].start ; | 
 |   Row [0].shared2.mark = -1 ; | 
 |   for (row = 1 ; row < n_row ; row++) | 
 |   { | 
 |     Row [row].start = Row [row-1].start + Row [row-1].length ; | 
 |     Row [row].shared1.p = Row [row].start ; | 
 |     Row [row].shared2.mark = -1 ; | 
 |   } | 
 |  | 
 |   /* === Create row form ================================================== */ | 
 |  | 
 |   if (stats [Status] == OkButJumbled) | 
 |   { | 
 |     /* if cols jumbled, watch for repeated row indices */ | 
 |     for (col = 0 ; col < n_col ; col++) | 
 |     { | 
 |       cp = &A [p [col]] ; | 
 |       cp_end = &A [p [col+1]] ; | 
 |       while (cp < cp_end) | 
 |       { | 
 | 	row = *cp++ ; | 
 | 	if (Row [row].shared2.mark != col) | 
 | 	{ | 
 | 	  A [(Row [row].shared1.p)++] = col ; | 
 | 	  Row [row].shared2.mark = col ; | 
 | 	} | 
 |       } | 
 |     } | 
 |   } | 
 |   else | 
 |   { | 
 |     /* if cols not jumbled, we don't need the mark (this is faster) */ | 
 |     for (col = 0 ; col < n_col ; col++) | 
 |     { | 
 |       cp = &A [p [col]] ; | 
 |       cp_end = &A [p [col+1]] ; | 
 |       while (cp < cp_end) | 
 |       { | 
 | 	A [(Row [*cp++].shared1.p)++] = col ; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /* === Clear the row marks and set row degrees ========================== */ | 
 |  | 
 |   for (row = 0 ; row < n_row ; row++) | 
 |   { | 
 |     Row [row].shared2.mark = 0 ; | 
 |     Row [row].shared1.degree = Row [row].length ; | 
 |   } | 
 |  | 
 |   /* === See if we need to re-create columns ============================== */ | 
 |  | 
 |   if (stats [Status] == OkButJumbled) | 
 |   { | 
 |     COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ; | 
 |  | 
 |  | 
 |     /* === Compute col pointers ========================================= */ | 
 |  | 
 |     /* col form of the matrix starts at A [0]. */ | 
 |     /* Note, we may have a gap between the col form and the row */ | 
 |     /* form if there were duplicate entries, if so, it will be */ | 
 |     /* removed upon the first garbage collection */ | 
 |     Col [0].start = 0 ; | 
 |     p [0] = Col [0].start ; | 
 |     for (col = 1 ; col < n_col ; col++) | 
 |     { | 
 |       /* note that the lengths here are for pruned columns, i.e. */ | 
 |       /* no duplicate row indices will exist for these columns */ | 
 |       Col [col].start = Col [col-1].start + Col [col-1].length ; | 
 |       p [col] = Col [col].start ; | 
 |     } | 
 |  | 
 |     /* === Re-create col form =========================================== */ | 
 |  | 
 |     for (row = 0 ; row < n_row ; row++) | 
 |     { | 
 |       rp = &A [Row [row].start] ; | 
 |       rp_end = rp + Row [row].length ; | 
 |       while (rp < rp_end) | 
 |       { | 
 | 	A [(p [*rp++])++] = row ; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /* === Done.  Matrix is not (or no longer) jumbled ====================== */ | 
 |  | 
 |   return (true) ; | 
 | } | 
 |  | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === init_scoring ========================================================= */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* | 
 |   Kills dense or empty columns and rows, calculates an initial score for | 
 |   each column, and places all columns in the degree lists.  Not user-callable. | 
 | */ | 
 | template <typename IndexType> | 
 | static void init_scoring | 
 |   ( | 
 |     /* === Parameters ======================================================= */ | 
 |  | 
 |     IndexType n_row,      /* number of rows of A */ | 
 |     IndexType n_col,      /* number of columns of A */ | 
 |     RowStructure<IndexType> Row [],    /* of size n_row+1 */ | 
 |     ColStructure<IndexType> Col [],    /* of size n_col+1 */ | 
 |     IndexType A [],     /* column form and row form of A */ | 
 |     IndexType head [],    /* of size n_col+1 */ | 
 |     double knobs [NKnobs],/* parameters */ | 
 |     IndexType *p_n_row2,    /* number of non-dense, non-empty rows */ | 
 |     IndexType *p_n_col2,    /* number of non-dense, non-empty columns */ | 
 |     IndexType *p_max_deg    /* maximum row degree */ | 
 |     ) | 
 | { | 
 |   /* === Local variables ================================================== */ | 
 |  | 
 |   IndexType c ;     /* a column index */ | 
 |   IndexType r, row ;    /* a row index */ | 
 |   IndexType *cp ;     /* a column pointer */ | 
 |   IndexType deg ;     /* degree of a row or column */ | 
 |   IndexType *cp_end ;   /* a pointer to the end of a column */ | 
 |   IndexType *new_cp ;   /* new column pointer */ | 
 |   IndexType col_length ;    /* length of pruned column */ | 
 |   IndexType score ;     /* current column score */ | 
 |   IndexType n_col2 ;    /* number of non-dense, non-empty columns */ | 
 |   IndexType n_row2 ;    /* number of non-dense, non-empty rows */ | 
 |   IndexType dense_row_count ; /* remove rows with more entries than this */ | 
 |   IndexType dense_col_count ; /* remove cols with more entries than this */ | 
 |   IndexType min_score ;   /* smallest column score */ | 
 |   IndexType max_deg ;   /* maximum row degree */ | 
 |   IndexType next_col ;    /* Used to add to degree list.*/ | 
 |  | 
 |  | 
 |   /* === Extract knobs ==================================================== */ | 
 |  | 
 |   dense_row_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [Colamd::DenseRow] * n_col), n_col)) ; | 
 |   dense_col_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [Colamd::DenseCol] * n_row), n_row)) ; | 
 |   COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ; | 
 |   max_deg = 0 ; | 
 |   n_col2 = n_col ; | 
 |   n_row2 = n_row ; | 
 |  | 
 |   /* === Kill empty columns =============================================== */ | 
 |  | 
 |   /* Put the empty columns at the end in their natural order, so that LU */ | 
 |   /* factorization can proceed as far as possible. */ | 
 |   for (c = n_col-1 ; c >= 0 ; c--) | 
 |   { | 
 |     deg = Col [c].length ; | 
 |     if (deg == 0) | 
 |     { | 
 |       /* this is a empty column, kill and order it last */ | 
 |       Col [c].shared2.order = --n_col2 ; | 
 |       Col[c].kill_principal() ; | 
 |     } | 
 |   } | 
 |   COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ; | 
 |  | 
 |   /* === Kill dense columns =============================================== */ | 
 |  | 
 |   /* Put the dense columns at the end, in their natural order */ | 
 |   for (c = n_col-1 ; c >= 0 ; c--) | 
 |   { | 
 |     /* skip any dead columns */ | 
 |     if (Col[c].is_dead()) | 
 |     { | 
 |       continue ; | 
 |     } | 
 |     deg = Col [c].length ; | 
 |     if (deg > dense_col_count) | 
 |     { | 
 |       /* this is a dense column, kill and order it last */ | 
 |       Col [c].shared2.order = --n_col2 ; | 
 |       /* decrement the row degrees */ | 
 |       cp = &A [Col [c].start] ; | 
 |       cp_end = cp + Col [c].length ; | 
 |       while (cp < cp_end) | 
 |       { | 
 | 	Row [*cp++].shared1.degree-- ; | 
 |       } | 
 |       Col[c].kill_principal() ; | 
 |     } | 
 |   } | 
 |   COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ; | 
 |  | 
 |   /* === Kill dense and empty rows ======================================== */ | 
 |  | 
 |   for (r = 0 ; r < n_row ; r++) | 
 |   { | 
 |     deg = Row [r].shared1.degree ; | 
 |     COLAMD_ASSERT (deg >= 0 && deg <= n_col) ; | 
 |     if (deg > dense_row_count || deg == 0) | 
 |     { | 
 |       /* kill a dense or empty row */ | 
 |       Row[r].kill() ; | 
 |       --n_row2 ; | 
 |     } | 
 |     else | 
 |     { | 
 |       /* keep track of max degree of remaining rows */ | 
 |       max_deg = numext::maxi(max_deg, deg) ; | 
 |     } | 
 |   } | 
 |   COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ; | 
 |  | 
 |   /* === Compute initial column scores ==================================== */ | 
 |  | 
 |   /* At this point the row degrees are accurate.  They reflect the number */ | 
 |   /* of "live" (non-dense) columns in each row.  No empty rows exist. */ | 
 |   /* Some "live" columns may contain only dead rows, however.  These are */ | 
 |   /* pruned in the code below. */ | 
 |  | 
 |   /* now find the initial matlab score for each column */ | 
 |   for (c = n_col-1 ; c >= 0 ; c--) | 
 |   { | 
 |     /* skip dead column */ | 
 |     if (Col[c].is_dead()) | 
 |     { | 
 |       continue ; | 
 |     } | 
 |     score = 0 ; | 
 |     cp = &A [Col [c].start] ; | 
 |     new_cp = cp ; | 
 |     cp_end = cp + Col [c].length ; | 
 |     while (cp < cp_end) | 
 |     { | 
 |       /* get a row */ | 
 |       row = *cp++ ; | 
 |       /* skip if dead */ | 
 |       if (Row[row].is_dead()) | 
 |       { | 
 | 	continue ; | 
 |       } | 
 |       /* compact the column */ | 
 |       *new_cp++ = row ; | 
 |       /* add row's external degree */ | 
 |       score += Row [row].shared1.degree - 1 ; | 
 |       /* guard against integer overflow */ | 
 |       score = numext::mini(score, n_col) ; | 
 |     } | 
 |     /* determine pruned column length */ | 
 |     col_length = (IndexType) (new_cp - &A [Col [c].start]) ; | 
 |     if (col_length == 0) | 
 |     { | 
 |       /* a newly-made null column (all rows in this col are "dense" */ | 
 |       /* and have already been killed) */ | 
 |       COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ; | 
 |       Col [c].shared2.order = --n_col2 ; | 
 |       Col[c].kill_principal() ; | 
 |     } | 
 |     else | 
 |     { | 
 |       /* set column length and set score */ | 
 |       COLAMD_ASSERT (score >= 0) ; | 
 |       COLAMD_ASSERT (score <= n_col) ; | 
 |       Col [c].length = col_length ; | 
 |       Col [c].shared2.score = score ; | 
 |     } | 
 |   } | 
 |   COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n", | 
 | 		  n_col-n_col2)) ; | 
 |  | 
 |   /* At this point, all empty rows and columns are dead.  All live columns */ | 
 |   /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ | 
 |   /* yet).  Rows may contain dead columns, but all live rows contain at */ | 
 |   /* least one live column. */ | 
 |  | 
 |   /* === Initialize degree lists ========================================== */ | 
 |  | 
 |  | 
 |   /* clear the hash buckets */ | 
 |   for (c = 0 ; c <= n_col ; c++) | 
 |   { | 
 |     head [c] = Empty ; | 
 |   } | 
 |   min_score = n_col ; | 
 |   /* place in reverse order, so low column indices are at the front */ | 
 |   /* of the lists.  This is to encourage natural tie-breaking */ | 
 |   for (c = n_col-1 ; c >= 0 ; c--) | 
 |   { | 
 |     /* only add principal columns to degree lists */ | 
 |     if (Col[c].is_alive()) | 
 |     { | 
 |       COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n", | 
 | 		      c, Col [c].shared2.score, min_score, n_col)) ; | 
 |  | 
 |       /* === Add columns score to DList =============================== */ | 
 |  | 
 |       score = Col [c].shared2.score ; | 
 |  | 
 |       COLAMD_ASSERT (min_score >= 0) ; | 
 |       COLAMD_ASSERT (min_score <= n_col) ; | 
 |       COLAMD_ASSERT (score >= 0) ; | 
 |       COLAMD_ASSERT (score <= n_col) ; | 
 |       COLAMD_ASSERT (head [score] >= Empty) ; | 
 |  | 
 |       /* now add this column to dList at proper score location */ | 
 |       next_col = head [score] ; | 
 |       Col [c].shared3.prev = Empty ; | 
 |       Col [c].shared4.degree_next = next_col ; | 
 |  | 
 |       /* if there already was a column with the same score, set its */ | 
 |       /* previous pointer to this new column */ | 
 |       if (next_col != Empty) | 
 |       { | 
 | 	Col [next_col].shared3.prev = c ; | 
 |       } | 
 |       head [score] = c ; | 
 |  | 
 |       /* see if this score is less than current min */ | 
 |       min_score = numext::mini(min_score, score) ; | 
 |  | 
 |  | 
 |     } | 
 |   } | 
 |  | 
 |  | 
 |   /* === Return number of remaining columns, and max row degree =========== */ | 
 |  | 
 |   *p_n_col2 = n_col2 ; | 
 |   *p_n_row2 = n_row2 ; | 
 |   *p_max_deg = max_deg ; | 
 | } | 
 |  | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === find_ordering ======================================================== */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* | 
 |   Order the principal columns of the supercolumn form of the matrix | 
 |   (no supercolumns on input).  Uses a minimum approximate column minimum | 
 |   degree ordering method.  Not user-callable. | 
 | */ | 
 | template <typename IndexType> | 
 | static IndexType find_ordering /* return the number of garbage collections */ | 
 |   ( | 
 |     /* === Parameters ======================================================= */ | 
 |  | 
 |     IndexType n_row,      /* number of rows of A */ | 
 |     IndexType n_col,      /* number of columns of A */ | 
 |     IndexType Alen,     /* size of A, 2*nnz + n_col or larger */ | 
 |     RowStructure<IndexType> Row [],    /* of size n_row+1 */ | 
 |     ColStructure<IndexType> Col [],    /* of size n_col+1 */ | 
 |     IndexType A [],     /* column form and row form of A */ | 
 |     IndexType head [],    /* of size n_col+1 */ | 
 |     IndexType n_col2,     /* Remaining columns to order */ | 
 |     IndexType max_deg,    /* Maximum row degree */ | 
 |     IndexType pfree     /* index of first free slot (2*nnz on entry) */ | 
 |     ) | 
 | { | 
 |   /* === Local variables ================================================== */ | 
 |  | 
 |   IndexType k ;     /* current pivot ordering step */ | 
 |   IndexType pivot_col ;   /* current pivot column */ | 
 |   IndexType *cp ;     /* a column pointer */ | 
 |   IndexType *rp ;     /* a row pointer */ | 
 |   IndexType pivot_row ;   /* current pivot row */ | 
 |   IndexType *new_cp ;   /* modified column pointer */ | 
 |   IndexType *new_rp ;   /* modified row pointer */ | 
 |   IndexType pivot_row_start ; /* pointer to start of pivot row */ | 
 |   IndexType pivot_row_degree ;  /* number of columns in pivot row */ | 
 |   IndexType pivot_row_length ;  /* number of supercolumns in pivot row */ | 
 |   IndexType pivot_col_score ; /* score of pivot column */ | 
 |   IndexType needed_memory ;   /* free space needed for pivot row */ | 
 |   IndexType *cp_end ;   /* pointer to the end of a column */ | 
 |   IndexType *rp_end ;   /* pointer to the end of a row */ | 
 |   IndexType row ;     /* a row index */ | 
 |   IndexType col ;     /* a column index */ | 
 |   IndexType max_score ;   /* maximum possible score */ | 
 |   IndexType cur_score ;   /* score of current column */ | 
 |   unsigned int hash ;   /* hash value for supernode detection */ | 
 |   IndexType head_column ;   /* head of hash bucket */ | 
 |   IndexType first_col ;   /* first column in hash bucket */ | 
 |   IndexType tag_mark ;    /* marker value for mark array */ | 
 |   IndexType row_mark ;    /* Row [row].shared2.mark */ | 
 |   IndexType set_difference ;  /* set difference size of row with pivot row */ | 
 |   IndexType min_score ;   /* smallest column score */ | 
 |   IndexType col_thickness ;   /* "thickness" (no. of columns in a supercol) */ | 
 |   IndexType max_mark ;    /* maximum value of tag_mark */ | 
 |   IndexType pivot_col_thickness ; /* number of columns represented by pivot col */ | 
 |   IndexType prev_col ;    /* Used by Dlist operations. */ | 
 |   IndexType next_col ;    /* Used by Dlist operations. */ | 
 |   IndexType ngarbage ;    /* number of garbage collections performed */ | 
 |  | 
 |  | 
 |   /* === Initialization and clear mark ==================================== */ | 
 |  | 
 |   max_mark = INT_MAX - n_col ;  /* INT_MAX defined in <limits.h> */ | 
 |   tag_mark = Colamd::clear_mark (n_row, Row) ; | 
 |   min_score = 0 ; | 
 |   ngarbage = 0 ; | 
 |   COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ; | 
 |  | 
 |   /* === Order the columns ================================================ */ | 
 |  | 
 |   for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */) | 
 |   { | 
 |  | 
 |     /* === Select pivot column, and order it ============================ */ | 
 |  | 
 |     /* make sure degree list isn't empty */ | 
 |     COLAMD_ASSERT (min_score >= 0) ; | 
 |     COLAMD_ASSERT (min_score <= n_col) ; | 
 |     COLAMD_ASSERT (head [min_score] >= Empty) ; | 
 |  | 
 |     /* get pivot column from head of minimum degree list */ | 
 |     while (min_score < n_col && head [min_score] == Empty) | 
 |     { | 
 |       min_score++ ; | 
 |     } | 
 |     pivot_col = head [min_score] ; | 
 |     COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ; | 
 |     next_col = Col [pivot_col].shared4.degree_next ; | 
 |     head [min_score] = next_col ; | 
 |     if (next_col != Empty) | 
 |     { | 
 |       Col [next_col].shared3.prev = Empty ; | 
 |     } | 
 |  | 
 |     COLAMD_ASSERT (Col[pivot_col].is_alive()) ; | 
 |     COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ; | 
 |  | 
 |     /* remember score for defrag check */ | 
 |     pivot_col_score = Col [pivot_col].shared2.score ; | 
 |  | 
 |     /* the pivot column is the kth column in the pivot order */ | 
 |     Col [pivot_col].shared2.order = k ; | 
 |  | 
 |     /* increment order count by column thickness */ | 
 |     pivot_col_thickness = Col [pivot_col].shared1.thickness ; | 
 |     k += pivot_col_thickness ; | 
 |     COLAMD_ASSERT (pivot_col_thickness > 0) ; | 
 |  | 
 |     /* === Garbage_collection, if necessary ============================= */ | 
 |  | 
 |     needed_memory = numext::mini(pivot_col_score, n_col - k) ; | 
 |     if (pfree + needed_memory >= Alen) | 
 |     { | 
 |       pfree = Colamd::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ; | 
 |       ngarbage++ ; | 
 |       /* after garbage collection we will have enough */ | 
 |       COLAMD_ASSERT (pfree + needed_memory < Alen) ; | 
 |       /* garbage collection has wiped out the Row[].shared2.mark array */ | 
 |       tag_mark = Colamd::clear_mark (n_row, Row) ; | 
 |  | 
 |     } | 
 |  | 
 |     /* === Compute pivot row pattern ==================================== */ | 
 |  | 
 |     /* get starting location for this new merged row */ | 
 |     pivot_row_start = pfree ; | 
 |  | 
 |     /* initialize new row counts to zero */ | 
 |     pivot_row_degree = 0 ; | 
 |  | 
 |     /* tag pivot column as having been visited so it isn't included */ | 
 |     /* in merged pivot row */ | 
 |     Col [pivot_col].shared1.thickness = -pivot_col_thickness ; | 
 |  | 
 |     /* pivot row is the union of all rows in the pivot column pattern */ | 
 |     cp = &A [Col [pivot_col].start] ; | 
 |     cp_end = cp + Col [pivot_col].length ; | 
 |     while (cp < cp_end) | 
 |     { | 
 |       /* get a row */ | 
 |       row = *cp++ ; | 
 |       COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", Row[row].is_alive(), row)) ; | 
 |       /* skip if row is dead */ | 
 |       if (Row[row].is_dead()) | 
 |       { | 
 | 	continue ; | 
 |       } | 
 |       rp = &A [Row [row].start] ; | 
 |       rp_end = rp + Row [row].length ; | 
 |       while (rp < rp_end) | 
 |       { | 
 | 	/* get a column */ | 
 | 	col = *rp++ ; | 
 | 	/* add the column, if alive and untagged */ | 
 | 	col_thickness = Col [col].shared1.thickness ; | 
 | 	if (col_thickness > 0 && Col[col].is_alive()) | 
 | 	{ | 
 | 	  /* tag column in pivot row */ | 
 | 	  Col [col].shared1.thickness = -col_thickness ; | 
 | 	  COLAMD_ASSERT (pfree < Alen) ; | 
 | 	  /* place column in pivot row */ | 
 | 	  A [pfree++] = col ; | 
 | 	  pivot_row_degree += col_thickness ; | 
 | 	} | 
 |       } | 
 |     } | 
 |  | 
 |     /* clear tag on pivot column */ | 
 |     Col [pivot_col].shared1.thickness = pivot_col_thickness ; | 
 |     max_deg = numext::maxi(max_deg, pivot_row_degree) ; | 
 |  | 
 |  | 
 |     /* === Kill all rows used to construct pivot row ==================== */ | 
 |  | 
 |     /* also kill pivot row, temporarily */ | 
 |     cp = &A [Col [pivot_col].start] ; | 
 |     cp_end = cp + Col [pivot_col].length ; | 
 |     while (cp < cp_end) | 
 |     { | 
 |       /* may be killing an already dead row */ | 
 |       row = *cp++ ; | 
 |       COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ; | 
 |       Row[row].kill() ; | 
 |     } | 
 |  | 
 |     /* === Select a row index to use as the new pivot row =============== */ | 
 |  | 
 |     pivot_row_length = pfree - pivot_row_start ; | 
 |     if (pivot_row_length > 0) | 
 |     { | 
 |       /* pick the "pivot" row arbitrarily (first row in col) */ | 
 |       pivot_row = A [Col [pivot_col].start] ; | 
 |       COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ; | 
 |     } | 
 |     else | 
 |     { | 
 |       /* there is no pivot row, since it is of zero length */ | 
 |       pivot_row = Empty ; | 
 |       COLAMD_ASSERT (pivot_row_length == 0) ; | 
 |     } | 
 |     COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ; | 
 |  | 
 |     /* === Approximate degree computation =============================== */ | 
 |  | 
 |     /* Here begins the computation of the approximate degree.  The column */ | 
 |     /* score is the sum of the pivot row "length", plus the size of the */ | 
 |     /* set differences of each row in the column minus the pattern of the */ | 
 |     /* pivot row itself.  The column ("thickness") itself is also */ | 
 |     /* excluded from the column score (we thus use an approximate */ | 
 |     /* external degree). */ | 
 |  | 
 |     /* The time taken by the following code (compute set differences, and */ | 
 |     /* add them up) is proportional to the size of the data structure */ | 
 |     /* being scanned - that is, the sum of the sizes of each column in */ | 
 |     /* the pivot row.  Thus, the amortized time to compute a column score */ | 
 |     /* is proportional to the size of that column (where size, in this */ | 
 |     /* context, is the column "length", or the number of row indices */ | 
 |     /* in that column).  The number of row indices in a column is */ | 
 |     /* monotonically non-decreasing, from the length of the original */ | 
 |     /* column on input to colamd. */ | 
 |  | 
 |     /* === Compute set differences ====================================== */ | 
 |  | 
 |     COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ; | 
 |  | 
 |     /* pivot row is currently dead - it will be revived later. */ | 
 |  | 
 |     COLAMD_DEBUG3 (("Pivot row: ")) ; | 
 |     /* for each column in pivot row */ | 
 |     rp = &A [pivot_row_start] ; | 
 |     rp_end = rp + pivot_row_length ; | 
 |     while (rp < rp_end) | 
 |     { | 
 |       col = *rp++ ; | 
 |       COLAMD_ASSERT (Col[col].is_alive() && col != pivot_col) ; | 
 |       COLAMD_DEBUG3 (("Col: %d\n", col)) ; | 
 |  | 
 |       /* clear tags used to construct pivot row pattern */ | 
 |       col_thickness = -Col [col].shared1.thickness ; | 
 |       COLAMD_ASSERT (col_thickness > 0) ; | 
 |       Col [col].shared1.thickness = col_thickness ; | 
 |  | 
 |       /* === Remove column from degree list =========================== */ | 
 |  | 
 |       cur_score = Col [col].shared2.score ; | 
 |       prev_col = Col [col].shared3.prev ; | 
 |       next_col = Col [col].shared4.degree_next ; | 
 |       COLAMD_ASSERT (cur_score >= 0) ; | 
 |       COLAMD_ASSERT (cur_score <= n_col) ; | 
 |       COLAMD_ASSERT (cur_score >= Empty) ; | 
 |       if (prev_col == Empty) | 
 |       { | 
 | 	head [cur_score] = next_col ; | 
 |       } | 
 |       else | 
 |       { | 
 | 	Col [prev_col].shared4.degree_next = next_col ; | 
 |       } | 
 |       if (next_col != Empty) | 
 |       { | 
 | 	Col [next_col].shared3.prev = prev_col ; | 
 |       } | 
 |  | 
 |       /* === Scan the column ========================================== */ | 
 |  | 
 |       cp = &A [Col [col].start] ; | 
 |       cp_end = cp + Col [col].length ; | 
 |       while (cp < cp_end) | 
 |       { | 
 | 	/* get a row */ | 
 | 	row = *cp++ ; | 
 | 	/* skip if dead */ | 
 | 	if (Row[row].is_dead()) | 
 | 	{ | 
 | 	  continue ; | 
 | 	} | 
 |   row_mark = Row [row].shared2.mark ; | 
 | 	COLAMD_ASSERT (row != pivot_row) ; | 
 | 	set_difference = row_mark - tag_mark ; | 
 | 	/* check if the row has been seen yet */ | 
 | 	if (set_difference < 0) | 
 | 	{ | 
 | 	  COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ; | 
 | 	  set_difference = Row [row].shared1.degree ; | 
 | 	} | 
 | 	/* subtract column thickness from this row's set difference */ | 
 | 	set_difference -= col_thickness ; | 
 | 	COLAMD_ASSERT (set_difference >= 0) ; | 
 | 	/* absorb this row if the set difference becomes zero */ | 
 | 	if (set_difference == 0) | 
 | 	{ | 
 | 	  COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ; | 
 | 	  Row[row].kill() ; | 
 | 	} | 
 | 	else | 
 | 	{ | 
 | 	  /* save the new mark */ | 
 | 	  Row [row].shared2.mark = set_difference + tag_mark ; | 
 | 	} | 
 |       } | 
 |     } | 
 |  | 
 |  | 
 |     /* === Add up set differences for each column ======================= */ | 
 |  | 
 |     COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ; | 
 |  | 
 |     /* for each column in pivot row */ | 
 |     rp = &A [pivot_row_start] ; | 
 |     rp_end = rp + pivot_row_length ; | 
 |     while (rp < rp_end) | 
 |     { | 
 |       /* get a column */ | 
 |       col = *rp++ ; | 
 |       COLAMD_ASSERT (Col[col].is_alive() && col != pivot_col) ; | 
 |       hash = 0 ; | 
 |       cur_score = 0 ; | 
 |       cp = &A [Col [col].start] ; | 
 |       /* compact the column */ | 
 |       new_cp = cp ; | 
 |       cp_end = cp + Col [col].length ; | 
 |  | 
 |       COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ; | 
 |  | 
 |       while (cp < cp_end) | 
 |       { | 
 | 	/* get a row */ | 
 | 	row = *cp++ ; | 
 | 	COLAMD_ASSERT(row >= 0 && row < n_row) ; | 
 | 	/* skip if dead */ | 
 | 	if (Row [row].is_dead()) | 
 | 	{ | 
 | 	  continue ; | 
 | 	} | 
 |   row_mark = Row [row].shared2.mark ; | 
 | 	COLAMD_ASSERT (row_mark > tag_mark) ; | 
 | 	/* compact the column */ | 
 | 	*new_cp++ = row ; | 
 | 	/* compute hash function */ | 
 | 	hash += row ; | 
 | 	/* add set difference */ | 
 | 	cur_score += row_mark - tag_mark ; | 
 | 	/* integer overflow... */ | 
 | 	cur_score = numext::mini(cur_score, n_col) ; | 
 |       } | 
 |  | 
 |       /* recompute the column's length */ | 
 |       Col [col].length = (IndexType) (new_cp - &A [Col [col].start]) ; | 
 |  | 
 |       /* === Further mass elimination ================================= */ | 
 |  | 
 |       if (Col [col].length == 0) | 
 |       { | 
 | 	COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ; | 
 | 	/* nothing left but the pivot row in this column */ | 
 | 	Col[col].kill_principal() ; | 
 | 	pivot_row_degree -= Col [col].shared1.thickness ; | 
 | 	COLAMD_ASSERT (pivot_row_degree >= 0) ; | 
 | 	/* order it */ | 
 | 	Col [col].shared2.order = k ; | 
 | 	/* increment order count by column thickness */ | 
 | 	k += Col [col].shared1.thickness ; | 
 |       } | 
 |       else | 
 |       { | 
 | 	/* === Prepare for supercolumn detection ==================== */ | 
 |  | 
 | 	COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ; | 
 |  | 
 | 	/* save score so far */ | 
 | 	Col [col].shared2.score = cur_score ; | 
 |  | 
 | 	/* add column to hash table, for supercolumn detection */ | 
 | 	hash %= n_col + 1 ; | 
 |  | 
 | 	COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ; | 
 | 	COLAMD_ASSERT (hash <= n_col) ; | 
 |  | 
 | 	head_column = head [hash] ; | 
 | 	if (head_column > Empty) | 
 | 	{ | 
 | 	  /* degree list "hash" is non-empty, use prev (shared3) of */ | 
 | 	  /* first column in degree list as head of hash bucket */ | 
 | 	  first_col = Col [head_column].shared3.headhash ; | 
 | 	  Col [head_column].shared3.headhash = col ; | 
 | 	} | 
 | 	else | 
 | 	{ | 
 | 	  /* degree list "hash" is empty, use head as hash bucket */ | 
 | 	  first_col = - (head_column + 2) ; | 
 | 	  head [hash] = - (col + 2) ; | 
 | 	} | 
 | 	Col [col].shared4.hash_next = first_col ; | 
 |  | 
 | 	/* save hash function in Col [col].shared3.hash */ | 
 | 	Col [col].shared3.hash = (IndexType) hash ; | 
 | 	COLAMD_ASSERT (Col[col].is_alive()) ; | 
 |       } | 
 |     } | 
 |  | 
 |     /* The approximate external column degree is now computed.  */ | 
 |  | 
 |     /* === Supercolumn detection ======================================== */ | 
 |  | 
 |     COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ; | 
 |  | 
 |     Colamd::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ; | 
 |  | 
 |     /* === Kill the pivotal column ====================================== */ | 
 |  | 
 |     Col[pivot_col].kill_principal() ; | 
 |  | 
 |     /* === Clear mark =================================================== */ | 
 |  | 
 |     tag_mark += (max_deg + 1) ; | 
 |     if (tag_mark >= max_mark) | 
 |     { | 
 |       COLAMD_DEBUG2 (("clearing tag_mark\n")) ; | 
 |       tag_mark = Colamd::clear_mark (n_row, Row) ; | 
 |     } | 
 |  | 
 |     /* === Finalize the new pivot row, and column scores ================ */ | 
 |  | 
 |     COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ; | 
 |  | 
 |     /* for each column in pivot row */ | 
 |     rp = &A [pivot_row_start] ; | 
 |     /* compact the pivot row */ | 
 |     new_rp = rp ; | 
 |     rp_end = rp + pivot_row_length ; | 
 |     while (rp < rp_end) | 
 |     { | 
 |       col = *rp++ ; | 
 |       /* skip dead columns */ | 
 |       if (Col[col].is_dead()) | 
 |       { | 
 | 	continue ; | 
 |       } | 
 |       *new_rp++ = col ; | 
 |       /* add new pivot row to column */ | 
 |       A [Col [col].start + (Col [col].length++)] = pivot_row ; | 
 |  | 
 |       /* retrieve score so far and add on pivot row's degree. */ | 
 |       /* (we wait until here for this in case the pivot */ | 
 |       /* row's degree was reduced due to mass elimination). */ | 
 |       cur_score = Col [col].shared2.score + pivot_row_degree ; | 
 |  | 
 |       /* calculate the max possible score as the number of */ | 
 |       /* external columns minus the 'k' value minus the */ | 
 |       /* columns thickness */ | 
 |       max_score = n_col - k - Col [col].shared1.thickness ; | 
 |  | 
 |       /* make the score the external degree of the union-of-rows */ | 
 |       cur_score -= Col [col].shared1.thickness ; | 
 |  | 
 |       /* make sure score is less or equal than the max score */ | 
 |       cur_score = numext::mini(cur_score, max_score) ; | 
 |       COLAMD_ASSERT (cur_score >= 0) ; | 
 |  | 
 |       /* store updated score */ | 
 |       Col [col].shared2.score = cur_score ; | 
 |  | 
 |       /* === Place column back in degree list ========================= */ | 
 |  | 
 |       COLAMD_ASSERT (min_score >= 0) ; | 
 |       COLAMD_ASSERT (min_score <= n_col) ; | 
 |       COLAMD_ASSERT (cur_score >= 0) ; | 
 |       COLAMD_ASSERT (cur_score <= n_col) ; | 
 |       COLAMD_ASSERT (head [cur_score] >= Empty) ; | 
 |       next_col = head [cur_score] ; | 
 |       Col [col].shared4.degree_next = next_col ; | 
 |       Col [col].shared3.prev = Empty ; | 
 |       if (next_col != Empty) | 
 |       { | 
 | 	Col [next_col].shared3.prev = col ; | 
 |       } | 
 |       head [cur_score] = col ; | 
 |  | 
 |       /* see if this score is less than current min */ | 
 |       min_score = numext::mini(min_score, cur_score) ; | 
 |  | 
 |     } | 
 |  | 
 |     /* === Resurrect the new pivot row ================================== */ | 
 |  | 
 |     if (pivot_row_degree > 0) | 
 |     { | 
 |       /* update pivot row length to reflect any cols that were killed */ | 
 |       /* during super-col detection and mass elimination */ | 
 |       Row [pivot_row].start  = pivot_row_start ; | 
 |       Row [pivot_row].length = (IndexType) (new_rp - &A[pivot_row_start]) ; | 
 |       Row [pivot_row].shared1.degree = pivot_row_degree ; | 
 |       Row [pivot_row].shared2.mark = 0 ; | 
 |       /* pivot row is no longer dead */ | 
 |     } | 
 |   } | 
 |  | 
 |   /* === All principal columns have now been ordered ====================== */ | 
 |  | 
 |   return (ngarbage) ; | 
 | } | 
 |  | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === order_children ======================================================= */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* | 
 |   The find_ordering routine has ordered all of the principal columns (the | 
 |   representatives of the supercolumns).  The non-principal columns have not | 
 |   yet been ordered.  This routine orders those columns by walking up the | 
 |   parent tree (a column is a child of the column which absorbed it).  The | 
 |   final permutation vector is then placed in p [0 ... n_col-1], with p [0] | 
 |   being the first column, and p [n_col-1] being the last.  It doesn't look | 
 |   like it at first glance, but be assured that this routine takes time linear | 
 |   in the number of columns.  Although not immediately obvious, the time | 
 |   taken by this routine is O (n_col), that is, linear in the number of | 
 |   columns.  Not user-callable. | 
 | */ | 
 | template <typename IndexType> | 
 | static inline  void order_children | 
 | ( | 
 |   /* === Parameters ======================================================= */ | 
 |  | 
 |   IndexType n_col,      /* number of columns of A */ | 
 |   ColStructure<IndexType> Col [],    /* of size n_col+1 */ | 
 |   IndexType p []      /* p [0 ... n_col-1] is the column permutation*/ | 
 |   ) | 
 | { | 
 |   /* === Local variables ================================================== */ | 
 |  | 
 |   IndexType i ;     /* loop counter for all columns */ | 
 |   IndexType c ;     /* column index */ | 
 |   IndexType parent ;    /* index of column's parent */ | 
 |   IndexType order ;     /* column's order */ | 
 |  | 
 |   /* === Order each non-principal column ================================== */ | 
 |  | 
 |   for (i = 0 ; i < n_col ; i++) | 
 |   { | 
 |     /* find an un-ordered non-principal column */ | 
 |     COLAMD_ASSERT (col_is_dead(Col, i)) ; | 
 |     if (!Col[i].is_dead_principal() && Col [i].shared2.order == Empty) | 
 |     { | 
 |       parent = i ; | 
 |       /* once found, find its principal parent */ | 
 |       do | 
 |       { | 
 | 	parent = Col [parent].shared1.parent ; | 
 |       } while (!Col[parent].is_dead_principal()) ; | 
 |  | 
 |       /* now, order all un-ordered non-principal columns along path */ | 
 |       /* to this parent.  collapse tree at the same time */ | 
 |       c = i ; | 
 |       /* get order of parent */ | 
 |       order = Col [parent].shared2.order ; | 
 |  | 
 |       do | 
 |       { | 
 | 	COLAMD_ASSERT (Col [c].shared2.order == Empty) ; | 
 |  | 
 | 	/* order this column */ | 
 | 	Col [c].shared2.order = order++ ; | 
 | 	/* collaps tree */ | 
 | 	Col [c].shared1.parent = parent ; | 
 |  | 
 | 	/* get immediate parent of this column */ | 
 | 	c = Col [c].shared1.parent ; | 
 |  | 
 | 	/* continue until we hit an ordered column.  There are */ | 
 | 	/* guaranteed not to be anymore unordered columns */ | 
 | 	/* above an ordered column */ | 
 |       } while (Col [c].shared2.order == Empty) ; | 
 |  | 
 |       /* re-order the super_col parent to largest order for this group */ | 
 |       Col [parent].shared2.order = order ; | 
 |     } | 
 |   } | 
 |  | 
 |   /* === Generate the permutation ========================================= */ | 
 |  | 
 |   for (c = 0 ; c < n_col ; c++) | 
 |   { | 
 |     p [Col [c].shared2.order] = c ; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === detect_super_cols ==================================================== */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* | 
 |   Detects supercolumns by finding matches between columns in the hash buckets. | 
 |   Check amongst columns in the set A [row_start ... row_start + row_length-1]. | 
 |   The columns under consideration are currently *not* in the degree lists, | 
 |   and have already been placed in the hash buckets. | 
 |  | 
 |   The hash bucket for columns whose hash function is equal to h is stored | 
 |   as follows: | 
 |  | 
 |   if head [h] is >= 0, then head [h] contains a degree list, so: | 
 |  | 
 |   head [h] is the first column in degree bucket h. | 
 |   Col [head [h]].headhash gives the first column in hash bucket h. | 
 |  | 
 |   otherwise, the degree list is empty, and: | 
 |  | 
 |   -(head [h] + 2) is the first column in hash bucket h. | 
 |  | 
 |   For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous | 
 |   column" pointer.  Col [c].shared3.hash is used instead as the hash number | 
 |   for that column.  The value of Col [c].shared4.hash_next is the next column | 
 |   in the same hash bucket. | 
 |  | 
 |   Assuming no, or "few" hash collisions, the time taken by this routine is | 
 |   linear in the sum of the sizes (lengths) of each column whose score has | 
 |   just been computed in the approximate degree computation. | 
 |   Not user-callable. | 
 | */ | 
 | template <typename IndexType> | 
 | static void detect_super_cols | 
 | ( | 
 |   /* === Parameters ======================================================= */ | 
 |  | 
 |   ColStructure<IndexType> Col [],    /* of size n_col+1 */ | 
 |   IndexType A [],     /* row indices of A */ | 
 |   IndexType head [],    /* head of degree lists and hash buckets */ | 
 |   IndexType row_start,    /* pointer to set of columns to check */ | 
 |   IndexType row_length    /* number of columns to check */ | 
 | ) | 
 | { | 
 |   /* === Local variables ================================================== */ | 
 |  | 
 |   IndexType hash ;      /* hash value for a column */ | 
 |   IndexType *rp ;     /* pointer to a row */ | 
 |   IndexType c ;     /* a column index */ | 
 |   IndexType super_c ;   /* column index of the column to absorb into */ | 
 |   IndexType *cp1 ;      /* column pointer for column super_c */ | 
 |   IndexType *cp2 ;      /* column pointer for column c */ | 
 |   IndexType length ;    /* length of column super_c */ | 
 |   IndexType prev_c ;    /* column preceding c in hash bucket */ | 
 |   IndexType i ;     /* loop counter */ | 
 |   IndexType *rp_end ;   /* pointer to the end of the row */ | 
 |   IndexType col ;     /* a column index in the row to check */ | 
 |   IndexType head_column ;   /* first column in hash bucket or degree list */ | 
 |   IndexType first_col ;   /* first column in hash bucket */ | 
 |  | 
 |   /* === Consider each column in the row ================================== */ | 
 |  | 
 |   rp = &A [row_start] ; | 
 |   rp_end = rp + row_length ; | 
 |   while (rp < rp_end) | 
 |   { | 
 |     col = *rp++ ; | 
 |     if (Col[col].is_dead()) | 
 |     { | 
 |       continue ; | 
 |     } | 
 |  | 
 |     /* get hash number for this column */ | 
 |     hash = Col [col].shared3.hash ; | 
 |     COLAMD_ASSERT (hash <= n_col) ; | 
 |  | 
 |     /* === Get the first column in this hash bucket ===================== */ | 
 |  | 
 |     head_column = head [hash] ; | 
 |     if (head_column > Empty) | 
 |     { | 
 |       first_col = Col [head_column].shared3.headhash ; | 
 |     } | 
 |     else | 
 |     { | 
 |       first_col = - (head_column + 2) ; | 
 |     } | 
 |  | 
 |     /* === Consider each column in the hash bucket ====================== */ | 
 |  | 
 |     for (super_c = first_col ; super_c != Empty ; | 
 | 	 super_c = Col [super_c].shared4.hash_next) | 
 |     { | 
 |       COLAMD_ASSERT (Col [super_c].is_alive()) ; | 
 |       COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ; | 
 |       length = Col [super_c].length ; | 
 |  | 
 |       /* prev_c is the column preceding column c in the hash bucket */ | 
 |       prev_c = super_c ; | 
 |  | 
 |       /* === Compare super_c with all columns after it ================ */ | 
 |  | 
 |       for (c = Col [super_c].shared4.hash_next ; | 
 | 	   c != Empty ; c = Col [c].shared4.hash_next) | 
 |       { | 
 | 	COLAMD_ASSERT (c != super_c) ; | 
 | 	COLAMD_ASSERT (Col[c].is_alive()) ; | 
 | 	COLAMD_ASSERT (Col [c].shared3.hash == hash) ; | 
 |  | 
 | 	/* not identical if lengths or scores are different */ | 
 | 	if (Col [c].length != length || | 
 | 	    Col [c].shared2.score != Col [super_c].shared2.score) | 
 | 	{ | 
 | 	  prev_c = c ; | 
 | 	  continue ; | 
 | 	} | 
 |  | 
 | 	/* compare the two columns */ | 
 | 	cp1 = &A [Col [super_c].start] ; | 
 | 	cp2 = &A [Col [c].start] ; | 
 |  | 
 | 	for (i = 0 ; i < length ; i++) | 
 | 	{ | 
 | 	  /* the columns are "clean" (no dead rows) */ | 
 | 	  COLAMD_ASSERT ( cp1->is_alive() ); | 
 | 	  COLAMD_ASSERT ( cp2->is_alive() ); | 
 | 	  /* row indices will same order for both supercols, */ | 
 | 	  /* no gather scatter necessary */ | 
 | 	  if (*cp1++ != *cp2++) | 
 | 	  { | 
 | 	    break ; | 
 | 	  } | 
 | 	} | 
 |  | 
 | 	/* the two columns are different if the for-loop "broke" */ | 
 | 	if (i != length) | 
 | 	{ | 
 | 	  prev_c = c ; | 
 | 	  continue ; | 
 | 	} | 
 |  | 
 | 	/* === Got it!  two columns are identical =================== */ | 
 |  | 
 | 	COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ; | 
 |  | 
 | 	Col [super_c].shared1.thickness += Col [c].shared1.thickness ; | 
 | 	Col [c].shared1.parent = super_c ; | 
 | 	Col[c].kill_non_principal() ; | 
 | 	/* order c later, in order_children() */ | 
 | 	Col [c].shared2.order = Empty ; | 
 | 	/* remove c from hash bucket */ | 
 | 	Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ; | 
 |       } | 
 |     } | 
 |  | 
 |     /* === Empty this hash bucket ======================================= */ | 
 |  | 
 |     if (head_column > Empty) | 
 |     { | 
 |       /* corresponding degree list "hash" is not empty */ | 
 |       Col [head_column].shared3.headhash = Empty ; | 
 |     } | 
 |     else | 
 |     { | 
 |       /* corresponding degree list "hash" is empty */ | 
 |       head [hash] = Empty ; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === garbage_collection =================================================== */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* | 
 |   Defragments and compacts columns and rows in the workspace A.  Used when | 
 |   all available memory has been used while performing row merging.  Returns | 
 |   the index of the first free position in A, after garbage collection.  The | 
 |   time taken by this routine is linear is the size of the array A, which is | 
 |   itself linear in the number of nonzeros in the input matrix. | 
 |   Not user-callable. | 
 | */ | 
 | template <typename IndexType> | 
 | static IndexType garbage_collection  /* returns the new value of pfree */ | 
 |   ( | 
 |     /* === Parameters ======================================================= */ | 
 |  | 
 |     IndexType n_row,      /* number of rows */ | 
 |     IndexType n_col,      /* number of columns */ | 
 |     RowStructure<IndexType> Row [],    /* row info */ | 
 |     ColStructure<IndexType> Col [],    /* column info */ | 
 |     IndexType A [],     /* A [0 ... Alen-1] holds the matrix */ | 
 |     IndexType *pfree      /* &A [0] ... pfree is in use */ | 
 |     ) | 
 | { | 
 |   /* === Local variables ================================================== */ | 
 |  | 
 |   IndexType *psrc ;     /* source pointer */ | 
 |   IndexType *pdest ;    /* destination pointer */ | 
 |   IndexType j ;     /* counter */ | 
 |   IndexType r ;     /* a row index */ | 
 |   IndexType c ;     /* a column index */ | 
 |   IndexType length ;    /* length of a row or column */ | 
 |  | 
 |   /* === Defragment the columns =========================================== */ | 
 |  | 
 |   pdest = &A[0] ; | 
 |   for (c = 0 ; c < n_col ; c++) | 
 |   { | 
 |     if (Col[c].is_alive()) | 
 |     { | 
 |       psrc = &A [Col [c].start] ; | 
 |  | 
 |       /* move and compact the column */ | 
 |       COLAMD_ASSERT (pdest <= psrc) ; | 
 |       Col [c].start = (IndexType) (pdest - &A [0]) ; | 
 |       length = Col [c].length ; | 
 |       for (j = 0 ; j < length ; j++) | 
 |       { | 
 | 	r = *psrc++ ; | 
 | 	if (Row[r].is_alive()) | 
 | 	{ | 
 | 	  *pdest++ = r ; | 
 | 	} | 
 |       } | 
 |       Col [c].length = (IndexType) (pdest - &A [Col [c].start]) ; | 
 |     } | 
 |   } | 
 |  | 
 |   /* === Prepare to defragment the rows =================================== */ | 
 |  | 
 |   for (r = 0 ; r < n_row ; r++) | 
 |   { | 
 |     if (Row[r].is_alive()) | 
 |     { | 
 |       if (Row [r].length == 0) | 
 |       { | 
 |         /* this row is of zero length.  cannot compact it, so kill it */ | 
 |         COLAMD_DEBUG3 (("Defrag row kill\n")) ; | 
 |         Row[r].kill() ; | 
 |       } | 
 |       else | 
 |       { | 
 |         /* save first column index in Row [r].shared2.first_column */ | 
 |         psrc = &A [Row [r].start] ; | 
 |         Row [r].shared2.first_column = *psrc ; | 
 |         COLAMD_ASSERT (Row[r].is_alive()) ; | 
 |         /* flag the start of the row with the one's complement of row */ | 
 |         *psrc = ones_complement(r) ; | 
 |  | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /* === Defragment the rows ============================================== */ | 
 |  | 
 |   psrc = pdest ; | 
 |   while (psrc < pfree) | 
 |   { | 
 |     /* find a negative number ... the start of a row */ | 
 |     if (*psrc++ < 0) | 
 |     { | 
 |       psrc-- ; | 
 |       /* get the row index */ | 
 |       r = ones_complement(*psrc) ; | 
 |       COLAMD_ASSERT (r >= 0 && r < n_row) ; | 
 |       /* restore first column index */ | 
 |       *psrc = Row [r].shared2.first_column ; | 
 |       COLAMD_ASSERT (Row[r].is_alive()) ; | 
 |  | 
 |       /* move and compact the row */ | 
 |       COLAMD_ASSERT (pdest <= psrc) ; | 
 |       Row [r].start = (IndexType) (pdest - &A [0]) ; | 
 |       length = Row [r].length ; | 
 |       for (j = 0 ; j < length ; j++) | 
 |       { | 
 | 	c = *psrc++ ; | 
 | 	if (Col[c].is_alive()) | 
 | 	{ | 
 | 	  *pdest++ = c ; | 
 | 	} | 
 |       } | 
 |       Row [r].length = (IndexType) (pdest - &A [Row [r].start]) ; | 
 |  | 
 |     } | 
 |   } | 
 |   /* ensure we found all the rows */ | 
 |   COLAMD_ASSERT (debug_rows == 0) ; | 
 |  | 
 |   /* === Return the new value of pfree ==================================== */ | 
 |  | 
 |   return ((IndexType) (pdest - &A [0])) ; | 
 | } | 
 |  | 
 |  | 
 | /* ========================================================================== */ | 
 | /* === clear_mark =========================================================== */ | 
 | /* ========================================================================== */ | 
 |  | 
 | /* | 
 |   Clears the Row [].shared2.mark array, and returns the new tag_mark. | 
 |   Return value is the new tag_mark.  Not user-callable. | 
 | */ | 
 | template <typename IndexType> | 
 | static inline  IndexType clear_mark  /* return the new value for tag_mark */ | 
 |   ( | 
 |       /* === Parameters ======================================================= */ | 
 |  | 
 |     IndexType n_row,    /* number of rows in A */ | 
 |     RowStructure<IndexType> Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */ | 
 |     ) | 
 | { | 
 |   /* === Local variables ================================================== */ | 
 |  | 
 |   IndexType r ; | 
 |  | 
 |   for (r = 0 ; r < n_row ; r++) | 
 |   { | 
 |     if (Row[r].is_alive()) | 
 |     { | 
 |       Row [r].shared2.mark = 0 ; | 
 |     } | 
 |   } | 
 |   return (1) ; | 
 | } | 
 |  | 
 | } // namespace Colamd | 
 |  | 
 | } // namespace internal | 
 | #endif |