| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H | 
 | #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 | template<typename MatrixType_> struct traits<ColPivHouseholderQR<MatrixType_> > | 
 |  : traits<MatrixType_> | 
 | { | 
 |   typedef MatrixXpr XprKind; | 
 |   typedef SolverStorage StorageKind; | 
 |   typedef int StorageIndex; | 
 |   enum { Flags = 0 }; | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | /** \ingroup QR_Module | 
 |   * | 
 |   * \class ColPivHouseholderQR | 
 |   * | 
 |   * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting | 
 |   * | 
 |   * \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition | 
 |   * | 
 |   * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R | 
 |   * such that | 
 |   * \f[ | 
 |   *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} | 
 |   * \f] | 
 |   * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an | 
 |   * upper triangular matrix. | 
 |   * | 
 |   * This decomposition performs column pivoting in order to be rank-revealing and improve | 
 |   * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. | 
 |   * | 
 |   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
 |   *  | 
 |   * \sa MatrixBase::colPivHouseholderQr() | 
 |   */ | 
 | template<typename MatrixType_> class ColPivHouseholderQR | 
 |         : public SolverBase<ColPivHouseholderQR<MatrixType_> > | 
 | { | 
 |   public: | 
 |  | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef SolverBase<ColPivHouseholderQR> Base; | 
 |     friend class SolverBase<ColPivHouseholderQR>; | 
 |  | 
 |     EIGEN_GENERIC_PUBLIC_INTERFACE(ColPivHouseholderQR) | 
 |     enum { | 
 |       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; | 
 |     typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType; | 
 |     typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType; | 
 |     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; | 
 |     typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType; | 
 |     typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType; | 
 |     typedef typename MatrixType::PlainObject PlainObject; | 
 |  | 
 |   private: | 
 |  | 
 |     typedef typename PermutationType::StorageIndex PermIndexType; | 
 |  | 
 |   public: | 
 |  | 
 |     /** | 
 |     * \brief Default Constructor. | 
 |     * | 
 |     * The default constructor is useful in cases in which the user intends to | 
 |     * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). | 
 |     */ | 
 |     ColPivHouseholderQR() | 
 |       : m_qr(), | 
 |         m_hCoeffs(), | 
 |         m_colsPermutation(), | 
 |         m_colsTranspositions(), | 
 |         m_temp(), | 
 |         m_colNormsUpdated(), | 
 |         m_colNormsDirect(), | 
 |         m_isInitialized(false), | 
 |         m_usePrescribedThreshold(false) {} | 
 |  | 
 |     /** \brief Default Constructor with memory preallocation | 
 |       * | 
 |       * Like the default constructor but with preallocation of the internal data | 
 |       * according to the specified problem \a size. | 
 |       * \sa ColPivHouseholderQR() | 
 |       */ | 
 |     ColPivHouseholderQR(Index rows, Index cols) | 
 |       : m_qr(rows, cols), | 
 |         m_hCoeffs((std::min)(rows,cols)), | 
 |         m_colsPermutation(PermIndexType(cols)), | 
 |         m_colsTranspositions(cols), | 
 |         m_temp(cols), | 
 |         m_colNormsUpdated(cols), | 
 |         m_colNormsDirect(cols), | 
 |         m_isInitialized(false), | 
 |         m_usePrescribedThreshold(false) {} | 
 |  | 
 |     /** \brief Constructs a QR factorization from a given matrix | 
 |       * | 
 |       * This constructor computes the QR factorization of the matrix \a matrix by calling | 
 |       * the method compute(). It is a short cut for: | 
 |       * | 
 |       * \code | 
 |       * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); | 
 |       * qr.compute(matrix); | 
 |       * \endcode | 
 |       * | 
 |       * \sa compute() | 
 |       */ | 
 |     template<typename InputType> | 
 |     explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix) | 
 |       : m_qr(matrix.rows(), matrix.cols()), | 
 |         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), | 
 |         m_colsPermutation(PermIndexType(matrix.cols())), | 
 |         m_colsTranspositions(matrix.cols()), | 
 |         m_temp(matrix.cols()), | 
 |         m_colNormsUpdated(matrix.cols()), | 
 |         m_colNormsDirect(matrix.cols()), | 
 |         m_isInitialized(false), | 
 |         m_usePrescribedThreshold(false) | 
 |     { | 
 |       compute(matrix.derived()); | 
 |     } | 
 |  | 
 |     /** \brief Constructs a QR factorization from a given matrix | 
 |       * | 
 |       * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. | 
 |       * | 
 |       * \sa ColPivHouseholderQR(const EigenBase&) | 
 |       */ | 
 |     template<typename InputType> | 
 |     explicit ColPivHouseholderQR(EigenBase<InputType>& matrix) | 
 |       : m_qr(matrix.derived()), | 
 |         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), | 
 |         m_colsPermutation(PermIndexType(matrix.cols())), | 
 |         m_colsTranspositions(matrix.cols()), | 
 |         m_temp(matrix.cols()), | 
 |         m_colNormsUpdated(matrix.cols()), | 
 |         m_colNormsDirect(matrix.cols()), | 
 |         m_isInitialized(false), | 
 |         m_usePrescribedThreshold(false) | 
 |     { | 
 |       computeInPlace(); | 
 |     } | 
 |  | 
 |     #ifdef EIGEN_PARSED_BY_DOXYGEN | 
 |     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which | 
 |       * *this is the QR decomposition, if any exists. | 
 |       * | 
 |       * \param b the right-hand-side of the equation to solve. | 
 |       * | 
 |       * \returns a solution. | 
 |       * | 
 |       * \note_about_checking_solutions | 
 |       * | 
 |       * \note_about_arbitrary_choice_of_solution | 
 |       * | 
 |       * Example: \include ColPivHouseholderQR_solve.cpp | 
 |       * Output: \verbinclude ColPivHouseholderQR_solve.out | 
 |       */ | 
 |     template<typename Rhs> | 
 |     inline const Solve<ColPivHouseholderQR, Rhs> | 
 |     solve(const MatrixBase<Rhs>& b) const; | 
 |     #endif | 
 |  | 
 |     HouseholderSequenceType householderQ() const; | 
 |     HouseholderSequenceType matrixQ() const | 
 |     { | 
 |       return householderQ(); | 
 |     } | 
 |  | 
 |     /** \returns a reference to the matrix where the Householder QR decomposition is stored | 
 |       */ | 
 |     const MatrixType& matrixQR() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       return m_qr; | 
 |     } | 
 |  | 
 |     /** \returns a reference to the matrix where the result Householder QR is stored | 
 |      * \warning The strict lower part of this matrix contains internal values. | 
 |      * Only the upper triangular part should be referenced. To get it, use | 
 |      * \code matrixR().template triangularView<Upper>() \endcode | 
 |      * For rank-deficient matrices, use | 
 |      * \code | 
 |      * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>() | 
 |      * \endcode | 
 |      */ | 
 |     const MatrixType& matrixR() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       return m_qr; | 
 |     } | 
 |  | 
 |     template<typename InputType> | 
 |     ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix); | 
 |  | 
 |     /** \returns a const reference to the column permutation matrix */ | 
 |     const PermutationType& colsPermutation() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       return m_colsPermutation; | 
 |     } | 
 |  | 
 |     /** \returns the absolute value of the determinant of the matrix of which | 
 |       * *this is the QR decomposition. It has only linear complexity | 
 |       * (that is, O(n) where n is the dimension of the square matrix) | 
 |       * as the QR decomposition has already been computed. | 
 |       * | 
 |       * \note This is only for square matrices. | 
 |       * | 
 |       * \warning a determinant can be very big or small, so for matrices | 
 |       * of large enough dimension, there is a risk of overflow/underflow. | 
 |       * One way to work around that is to use logAbsDeterminant() instead. | 
 |       * | 
 |       * \sa logAbsDeterminant(), MatrixBase::determinant() | 
 |       */ | 
 |     typename MatrixType::RealScalar absDeterminant() const; | 
 |  | 
 |     /** \returns the natural log of the absolute value of the determinant of the matrix of which | 
 |       * *this is the QR decomposition. It has only linear complexity | 
 |       * (that is, O(n) where n is the dimension of the square matrix) | 
 |       * as the QR decomposition has already been computed. | 
 |       * | 
 |       * \note This is only for square matrices. | 
 |       * | 
 |       * \note This method is useful to work around the risk of overflow/underflow that's inherent | 
 |       * to determinant computation. | 
 |       * | 
 |       * \sa absDeterminant(), MatrixBase::determinant() | 
 |       */ | 
 |     typename MatrixType::RealScalar logAbsDeterminant() const; | 
 |  | 
 |     /** \returns the rank of the matrix of which *this is the QR decomposition. | 
 |       * | 
 |       * \note This method has to determine which pivots should be considered nonzero. | 
 |       *       For that, it uses the threshold value that you can control by calling | 
 |       *       setThreshold(const RealScalar&). | 
 |       */ | 
 |     inline Index rank() const | 
 |     { | 
 |       using std::abs; | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); | 
 |       Index result = 0; | 
 |       for(Index i = 0; i < m_nonzero_pivots; ++i) | 
 |         result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); | 
 |       return result; | 
 |     } | 
 |  | 
 |     /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. | 
 |       * | 
 |       * \note This method has to determine which pivots should be considered nonzero. | 
 |       *       For that, it uses the threshold value that you can control by calling | 
 |       *       setThreshold(const RealScalar&). | 
 |       */ | 
 |     inline Index dimensionOfKernel() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       return cols() - rank(); | 
 |     } | 
 |  | 
 |     /** \returns true if the matrix of which *this is the QR decomposition represents an injective | 
 |       *          linear map, i.e. has trivial kernel; false otherwise. | 
 |       * | 
 |       * \note This method has to determine which pivots should be considered nonzero. | 
 |       *       For that, it uses the threshold value that you can control by calling | 
 |       *       setThreshold(const RealScalar&). | 
 |       */ | 
 |     inline bool isInjective() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       return rank() == cols(); | 
 |     } | 
 |  | 
 |     /** \returns true if the matrix of which *this is the QR decomposition represents a surjective | 
 |       *          linear map; false otherwise. | 
 |       * | 
 |       * \note This method has to determine which pivots should be considered nonzero. | 
 |       *       For that, it uses the threshold value that you can control by calling | 
 |       *       setThreshold(const RealScalar&). | 
 |       */ | 
 |     inline bool isSurjective() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       return rank() == rows(); | 
 |     } | 
 |  | 
 |     /** \returns true if the matrix of which *this is the QR decomposition is invertible. | 
 |       * | 
 |       * \note This method has to determine which pivots should be considered nonzero. | 
 |       *       For that, it uses the threshold value that you can control by calling | 
 |       *       setThreshold(const RealScalar&). | 
 |       */ | 
 |     inline bool isInvertible() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       return isInjective() && isSurjective(); | 
 |     } | 
 |  | 
 |     /** \returns the inverse of the matrix of which *this is the QR decomposition. | 
 |       * | 
 |       * \note If this matrix is not invertible, the returned matrix has undefined coefficients. | 
 |       *       Use isInvertible() to first determine whether this matrix is invertible. | 
 |       */ | 
 |     inline const Inverse<ColPivHouseholderQR> inverse() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       return Inverse<ColPivHouseholderQR>(*this); | 
 |     } | 
 |  | 
 |     inline Index rows() const { return m_qr.rows(); } | 
 |     inline Index cols() const { return m_qr.cols(); } | 
 |  | 
 |     /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. | 
 |       * | 
 |       * For advanced uses only. | 
 |       */ | 
 |     const HCoeffsType& hCoeffs() const { return m_hCoeffs; } | 
 |  | 
 |     /** Allows to prescribe a threshold to be used by certain methods, such as rank(), | 
 |       * who need to determine when pivots are to be considered nonzero. This is not used for the | 
 |       * QR decomposition itself. | 
 |       * | 
 |       * When it needs to get the threshold value, Eigen calls threshold(). By default, this | 
 |       * uses a formula to automatically determine a reasonable threshold. | 
 |       * Once you have called the present method setThreshold(const RealScalar&), | 
 |       * your value is used instead. | 
 |       * | 
 |       * \param threshold The new value to use as the threshold. | 
 |       * | 
 |       * A pivot will be considered nonzero if its absolute value is strictly greater than | 
 |       *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ | 
 |       * where maxpivot is the biggest pivot. | 
 |       * | 
 |       * If you want to come back to the default behavior, call setThreshold(Default_t) | 
 |       */ | 
 |     ColPivHouseholderQR& setThreshold(const RealScalar& threshold) | 
 |     { | 
 |       m_usePrescribedThreshold = true; | 
 |       m_prescribedThreshold = threshold; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     /** Allows to come back to the default behavior, letting Eigen use its default formula for | 
 |       * determining the threshold. | 
 |       * | 
 |       * You should pass the special object Eigen::Default as parameter here. | 
 |       * \code qr.setThreshold(Eigen::Default); \endcode | 
 |       * | 
 |       * See the documentation of setThreshold(const RealScalar&). | 
 |       */ | 
 |     ColPivHouseholderQR& setThreshold(Default_t) | 
 |     { | 
 |       m_usePrescribedThreshold = false; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     /** Returns the threshold that will be used by certain methods such as rank(). | 
 |       * | 
 |       * See the documentation of setThreshold(const RealScalar&). | 
 |       */ | 
 |     RealScalar threshold() const | 
 |     { | 
 |       eigen_assert(m_isInitialized || m_usePrescribedThreshold); | 
 |       return m_usePrescribedThreshold ? m_prescribedThreshold | 
 |       // this formula comes from experimenting (see "LU precision tuning" thread on the list) | 
 |       // and turns out to be identical to Higham's formula used already in LDLt. | 
 |                                       : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); | 
 |     } | 
 |  | 
 |     /** \returns the number of nonzero pivots in the QR decomposition. | 
 |       * Here nonzero is meant in the exact sense, not in a fuzzy sense. | 
 |       * So that notion isn't really intrinsically interesting, but it is | 
 |       * still useful when implementing algorithms. | 
 |       * | 
 |       * \sa rank() | 
 |       */ | 
 |     inline Index nonzeroPivots() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |       return m_nonzero_pivots; | 
 |     } | 
 |  | 
 |     /** \returns the absolute value of the biggest pivot, i.e. the biggest | 
 |       *          diagonal coefficient of R. | 
 |       */ | 
 |     RealScalar maxPivot() const { return m_maxpivot; } | 
 |  | 
 |     /** \brief Reports whether the QR factorization was successful. | 
 |       * | 
 |       * \note This function always returns \c Success. It is provided for compatibility | 
 |       * with other factorization routines. | 
 |       * \returns \c Success | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |       return Success; | 
 |     } | 
 |  | 
 |     #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |     template<typename RhsType, typename DstType> | 
 |     void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
 |  | 
 |     template<bool Conjugate, typename RhsType, typename DstType> | 
 |     void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; | 
 |     #endif | 
 |  | 
 |   protected: | 
 |  | 
 |     friend class CompleteOrthogonalDecomposition<MatrixType>; | 
 |  | 
 |     EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
 |  | 
 |     void computeInPlace(); | 
 |  | 
 |     MatrixType m_qr; | 
 |     HCoeffsType m_hCoeffs; | 
 |     PermutationType m_colsPermutation; | 
 |     IntRowVectorType m_colsTranspositions; | 
 |     RowVectorType m_temp; | 
 |     RealRowVectorType m_colNormsUpdated; | 
 |     RealRowVectorType m_colNormsDirect; | 
 |     bool m_isInitialized, m_usePrescribedThreshold; | 
 |     RealScalar m_prescribedThreshold, m_maxpivot; | 
 |     Index m_nonzero_pivots; | 
 |     Index m_det_pq; | 
 | }; | 
 |  | 
 | template<typename MatrixType> | 
 | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const | 
 | { | 
 |   using std::abs; | 
 |   eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
 |   return abs(m_qr.diagonal().prod()); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const | 
 | { | 
 |   eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
 |   return m_qr.diagonal().cwiseAbs().array().log().sum(); | 
 | } | 
 |  | 
 | /** Performs the QR factorization of the given matrix \a matrix. The result of | 
 |   * the factorization is stored into \c *this, and a reference to \c *this | 
 |   * is returned. | 
 |   * | 
 |   * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&) | 
 |   */ | 
 | template<typename MatrixType> | 
 | template<typename InputType> | 
 | ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix) | 
 | { | 
 |   m_qr = matrix.derived(); | 
 |   computeInPlace(); | 
 |   return *this; | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void ColPivHouseholderQR<MatrixType>::computeInPlace() | 
 | { | 
 |   // the column permutation is stored as int indices, so just to be sure: | 
 |   eigen_assert(m_qr.cols()<=NumTraits<int>::highest()); | 
 |  | 
 |   using std::abs; | 
 |  | 
 |   Index rows = m_qr.rows(); | 
 |   Index cols = m_qr.cols(); | 
 |   Index size = m_qr.diagonalSize(); | 
 |  | 
 |   m_hCoeffs.resize(size); | 
 |  | 
 |   m_temp.resize(cols); | 
 |  | 
 |   m_colsTranspositions.resize(m_qr.cols()); | 
 |   Index number_of_transpositions = 0; | 
 |  | 
 |   m_colNormsUpdated.resize(cols); | 
 |   m_colNormsDirect.resize(cols); | 
 |   for (Index k = 0; k < cols; ++k) { | 
 |     // colNormsDirect(k) caches the most recent directly computed norm of | 
 |     // column k. | 
 |     m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm(); | 
 |     m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k); | 
 |   } | 
 |  | 
 |   RealScalar threshold_helper =  numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows); | 
 |   RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon()); | 
 |  | 
 |   m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) | 
 |   m_maxpivot = RealScalar(0); | 
 |  | 
 |   for(Index k = 0; k < size; ++k) | 
 |   { | 
 |     // first, we look up in our table m_colNormsUpdated which column has the biggest norm | 
 |     Index biggest_col_index; | 
 |     RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index)); | 
 |     biggest_col_index += k; | 
 |  | 
 |     // Track the number of meaningful pivots but do not stop the decomposition to make | 
 |     // sure that the initial matrix is properly reproduced. See bug 941. | 
 |     if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k)) | 
 |       m_nonzero_pivots = k; | 
 |  | 
 |     // apply the transposition to the columns | 
 |     m_colsTranspositions.coeffRef(k) = biggest_col_index; | 
 |     if(k != biggest_col_index) { | 
 |       m_qr.col(k).swap(m_qr.col(biggest_col_index)); | 
 |       std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index)); | 
 |       std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index)); | 
 |       ++number_of_transpositions; | 
 |     } | 
 |  | 
 |     // generate the householder vector, store it below the diagonal | 
 |     RealScalar beta; | 
 |     m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); | 
 |  | 
 |     // apply the householder transformation to the diagonal coefficient | 
 |     m_qr.coeffRef(k,k) = beta; | 
 |  | 
 |     // remember the maximum absolute value of diagonal coefficients | 
 |     if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); | 
 |  | 
 |     // apply the householder transformation | 
 |     m_qr.bottomRightCorner(rows-k, cols-k-1) | 
 |         .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); | 
 |  | 
 |     // update our table of norms of the columns | 
 |     for (Index j = k + 1; j < cols; ++j) { | 
 |       // The following implements the stable norm downgrade step discussed in | 
 |       // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf | 
 |       // and used in LAPACK routines xGEQPF and xGEQP3. | 
 |       // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html | 
 |       if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) { | 
 |         RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j); | 
 |         temp = (RealScalar(1) + temp) * (RealScalar(1) - temp); | 
 |         temp = temp <  RealScalar(0) ? RealScalar(0) : temp; | 
 |         RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) / | 
 |                                                            m_colNormsDirect.coeffRef(j)); | 
 |         if (temp2 <= norm_downdate_threshold) { | 
 |           // The updated norm has become too inaccurate so re-compute the column | 
 |           // norm directly. | 
 |           m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm(); | 
 |           m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j); | 
 |         } else { | 
 |           m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   m_colsPermutation.setIdentity(PermIndexType(cols)); | 
 |   for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k) | 
 |     m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k))); | 
 |  | 
 |   m_det_pq = (number_of_transpositions%2) ? -1 : 1; | 
 |   m_isInitialized = true; | 
 | } | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 | template<typename MatrixType_> | 
 | template<typename RhsType, typename DstType> | 
 | void ColPivHouseholderQR<MatrixType_>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
 | { | 
 |   const Index nonzero_pivots = nonzeroPivots(); | 
 |  | 
 |   if(nonzero_pivots == 0) | 
 |   { | 
 |     dst.setZero(); | 
 |     return; | 
 |   } | 
 |  | 
 |   typename RhsType::PlainObject c(rhs); | 
 |  | 
 |   c.applyOnTheLeft(householderQ().setLength(nonzero_pivots).adjoint() ); | 
 |  | 
 |   m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) | 
 |       .template triangularView<Upper>() | 
 |       .solveInPlace(c.topRows(nonzero_pivots)); | 
 |  | 
 |   for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i); | 
 |   for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero(); | 
 | } | 
 |  | 
 | template<typename MatrixType_> | 
 | template<bool Conjugate, typename RhsType, typename DstType> | 
 | void ColPivHouseholderQR<MatrixType_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const | 
 | { | 
 |   const Index nonzero_pivots = nonzeroPivots(); | 
 |  | 
 |   if(nonzero_pivots == 0) | 
 |   { | 
 |     dst.setZero(); | 
 |     return; | 
 |   } | 
 |  | 
 |   typename RhsType::PlainObject c(m_colsPermutation.transpose()*rhs); | 
 |  | 
 |   m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) | 
 |         .template triangularView<Upper>() | 
 |         .transpose().template conjugateIf<Conjugate>() | 
 |         .solveInPlace(c.topRows(nonzero_pivots)); | 
 |  | 
 |   dst.topRows(nonzero_pivots) = c.topRows(nonzero_pivots); | 
 |   dst.bottomRows(rows()-nonzero_pivots).setZero(); | 
 |  | 
 |   dst.applyOnTheLeft(householderQ().setLength(nonzero_pivots).template conjugateIf<!Conjugate>() ); | 
 | } | 
 | #endif | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename DstXprType, typename MatrixType> | 
 | struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename ColPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense> | 
 | { | 
 |   typedef ColPivHouseholderQR<MatrixType> QrType; | 
 |   typedef Inverse<QrType> SrcXprType; | 
 |   static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &) | 
 |   { | 
 |     dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); | 
 |   } | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | /** \returns the matrix Q as a sequence of householder transformations. | 
 |   * You can extract the meaningful part only by using: | 
 |   * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/ | 
 | template<typename MatrixType> | 
 | typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType> | 
 |   ::householderQ() const | 
 | { | 
 |   eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
 |   return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); | 
 | } | 
 |  | 
 | /** \return the column-pivoting Householder QR decomposition of \c *this. | 
 |   * | 
 |   * \sa class ColPivHouseholderQR | 
 |   */ | 
 | template<typename Derived> | 
 | const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject> | 
 | MatrixBase<Derived>::colPivHouseholderQr() const | 
 | { | 
 |   return ColPivHouseholderQR<PlainObject>(eval()); | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |