| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | /* | 
 | NOTE: these functions have been adapted from the LDL library: | 
 |  | 
 | LDL Copyright (c) 2005 by Timothy A. Davis.  All Rights Reserved. | 
 |  | 
 | The author of LDL, Timothy A. Davis., has executed a license with Google LLC | 
 | to permit distribution of this code and derivative works as part of Eigen under | 
 | the Mozilla Public License v. 2.0, as stated at the top of this file. | 
 |  */ | 
 |  | 
 | #ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H | 
 | #define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | template<typename Derived> | 
 | void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT) | 
 | { | 
 |   const StorageIndex size = StorageIndex(ap.rows()); | 
 |   m_matrix.resize(size, size); | 
 |   m_parent.resize(size); | 
 |   m_nonZerosPerCol.resize(size); | 
 |  | 
 |   ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0); | 
 |  | 
 |   for(StorageIndex k = 0; k < size; ++k) | 
 |   { | 
 |     /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ | 
 |     m_parent[k] = -1;             /* parent of k is not yet known */ | 
 |     tags[k] = k;                  /* mark node k as visited */ | 
 |     m_nonZerosPerCol[k] = 0;      /* count of nonzeros in column k of L */ | 
 |     for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) | 
 |     { | 
 |       StorageIndex i = it.index(); | 
 |       if(i < k) | 
 |       { | 
 |         /* follow path from i to root of etree, stop at flagged node */ | 
 |         for(; tags[i] != k; i = m_parent[i]) | 
 |         { | 
 |           /* find parent of i if not yet determined */ | 
 |           if (m_parent[i] == -1) | 
 |             m_parent[i] = k; | 
 |           m_nonZerosPerCol[i]++;        /* L (k,i) is nonzero */ | 
 |           tags[i] = k;                  /* mark i as visited */ | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /* construct Lp index array from m_nonZerosPerCol column counts */ | 
 |   StorageIndex* Lp = m_matrix.outerIndexPtr(); | 
 |   Lp[0] = 0; | 
 |   for(StorageIndex k = 0; k < size; ++k) | 
 |     Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1); | 
 |  | 
 |   m_matrix.resizeNonZeros(Lp[size]); | 
 |  | 
 |   m_isInitialized     = true; | 
 |   m_info              = Success; | 
 |   m_analysisIsOk      = true; | 
 |   m_factorizationIsOk = false; | 
 | } | 
 |  | 
 |  | 
 | template<typename Derived> | 
 | template<bool DoLDLT> | 
 | void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap) | 
 | { | 
 |   using std::sqrt; | 
 |  | 
 |   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); | 
 |   eigen_assert(ap.rows()==ap.cols()); | 
 |   eigen_assert(m_parent.size()==ap.rows()); | 
 |   eigen_assert(m_nonZerosPerCol.size()==ap.rows()); | 
 |  | 
 |   const StorageIndex size = StorageIndex(ap.rows()); | 
 |   const StorageIndex* Lp = m_matrix.outerIndexPtr(); | 
 |   StorageIndex* Li = m_matrix.innerIndexPtr(); | 
 |   Scalar* Lx = m_matrix.valuePtr(); | 
 |  | 
 |   ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0); | 
 |   ei_declare_aligned_stack_constructed_variable(StorageIndex,  pattern, size, 0); | 
 |   ei_declare_aligned_stack_constructed_variable(StorageIndex,  tags, size, 0); | 
 |  | 
 |   bool ok = true; | 
 |   m_diag.resize(DoLDLT ? size : 0); | 
 |  | 
 |   for(StorageIndex k = 0; k < size; ++k) | 
 |   { | 
 |     // compute nonzero pattern of kth row of L, in topological order | 
 |     y[k] = Scalar(0);                     // Y(0:k) is now all zero | 
 |     StorageIndex top = size;               // stack for pattern is empty | 
 |     tags[k] = k;                    // mark node k as visited | 
 |     m_nonZerosPerCol[k] = 0;        // count of nonzeros in column k of L | 
 |     for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) | 
 |     { | 
 |       StorageIndex i = it.index(); | 
 |       if(i <= k) | 
 |       { | 
 |         y[i] += numext::conj(it.value());            /* scatter A(i,k) into Y (sum duplicates) */ | 
 |         Index len; | 
 |         for(len = 0; tags[i] != k; i = m_parent[i]) | 
 |         { | 
 |           pattern[len++] = i;     /* L(k,i) is nonzero */ | 
 |           tags[i] = k;            /* mark i as visited */ | 
 |         } | 
 |         while(len > 0) | 
 |           pattern[--top] = pattern[--len]; | 
 |       } | 
 |     } | 
 |  | 
 |     /* compute numerical values kth row of L (a sparse triangular solve) */ | 
 |  | 
 |     RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset;    // get D(k,k), apply the shift function, and clear Y(k) | 
 |     y[k] = Scalar(0); | 
 |     for(; top < size; ++top) | 
 |     { | 
 |       Index i = pattern[top];       /* pattern[top:n-1] is pattern of L(:,k) */ | 
 |       Scalar yi = y[i];             /* get and clear Y(i) */ | 
 |       y[i] = Scalar(0); | 
 |  | 
 |       /* the nonzero entry L(k,i) */ | 
 |       Scalar l_ki; | 
 |       if(DoLDLT) | 
 |         l_ki = yi / numext::real(m_diag[i]); | 
 |       else | 
 |         yi = l_ki = yi / Lx[Lp[i]]; | 
 |  | 
 |       Index p2 = Lp[i] + m_nonZerosPerCol[i]; | 
 |       Index p; | 
 |       for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p) | 
 |         y[Li[p]] -= numext::conj(Lx[p]) * yi; | 
 |       d -= numext::real(l_ki * numext::conj(yi)); | 
 |       Li[p] = k;                          /* store L(k,i) in column form of L */ | 
 |       Lx[p] = l_ki; | 
 |       ++m_nonZerosPerCol[i];              /* increment count of nonzeros in col i */ | 
 |     } | 
 |     if(DoLDLT) | 
 |     { | 
 |       m_diag[k] = d; | 
 |       if(d == RealScalar(0)) | 
 |       { | 
 |         ok = false;                         /* failure, D(k,k) is zero */ | 
 |         break; | 
 |       } | 
 |     } | 
 |     else | 
 |     { | 
 |       Index p = Lp[k] + m_nonZerosPerCol[k]++; | 
 |       Li[p] = k ;                /* store L(k,k) = sqrt (d) in column k */ | 
 |       if(d <= RealScalar(0)) { | 
 |         ok = false;              /* failure, matrix is not positive definite */ | 
 |         break; | 
 |       } | 
 |       Lx[p] = sqrt(d) ; | 
 |     } | 
 |   } | 
 |  | 
 |   m_info = ok ? Success : NumericalIssue; | 
 |   m_factorizationIsOk = true; | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H |