| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | /*  | 
 |   | 
 |  * NOTE: This file is the modified version of xpivotL.c file in SuperLU  | 
 |   | 
 |  * -- SuperLU routine (version 3.0) -- | 
 |  * Univ. of California Berkeley, Xerox Palo Alto Research Center, | 
 |  * and Lawrence Berkeley National Lab. | 
 |  * October 15, 2003 | 
 |  * | 
 |  * Copyright (c) 1994 by Xerox Corporation.  All rights reserved. | 
 |  * | 
 |  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY | 
 |  * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK. | 
 |  * | 
 |  * Permission is hereby granted to use or copy this program for any | 
 |  * purpose, provided the above notices are retained on all copies. | 
 |  * Permission to modify the code and to distribute modified code is | 
 |  * granted, provided the above notices are retained, and a notice that | 
 |  * the code was modified is included with the above copyright notice. | 
 |  */ | 
 | #ifndef SPARSELU_PIVOTL_H | 
 | #define SPARSELU_PIVOTL_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 | namespace internal { | 
 |    | 
 | /** | 
 |  * \brief Performs the numerical pivotin on the current column of L, and the CDIV operation. | 
 |  *  | 
 |  * Pivot policy : | 
 |  * (1) Compute thresh = u * max_(i>=j) abs(A_ij); | 
 |  * (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN | 
 |  *           pivot row = k; | 
 |  *       ELSE IF abs(A_jj) >= thresh THEN | 
 |  *           pivot row = j; | 
 |  *       ELSE | 
 |  *           pivot row = m; | 
 |  *  | 
 |  *   Note: If you absolutely want to use a given pivot order, then set u=0.0. | 
 |  *  | 
 |  * \param jcol The current column of L | 
 |  * \param diagpivotthresh diagonal pivoting threshold | 
 |  * \param[in,out] perm_r Row permutation (threshold pivoting) | 
 |  * \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc' | 
 |  * \param[out] pivrow  The pivot row | 
 |  * \param glu Global LU data | 
 |  * \return 0 if success, i > 0 if U(i,i) is exactly zero  | 
 |  *  | 
 |  */ | 
 | template <typename Scalar, typename StorageIndex> | 
 | Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu) | 
 | { | 
 |    | 
 |   Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol | 
 |   Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0 | 
 |   Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion | 
 |   Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode | 
 |   Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); // leading dimension | 
 |   Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode | 
 |   Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode | 
 |   StorageIndex* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode | 
 |    | 
 |   // Determine the largest abs numerical value for partial pivoting  | 
 |   Index diagind = iperm_c(jcol); // diagonal index  | 
 |   RealScalar pivmax(-1.0); | 
 |   Index pivptr = nsupc;  | 
 |   Index diag = emptyIdxLU;  | 
 |   RealScalar rtemp; | 
 |   Index isub, icol, itemp, k;  | 
 |   for (isub = nsupc; isub < nsupr; ++isub) { | 
 |     using std::abs; | 
 |     rtemp = abs(lu_col_ptr[isub]); | 
 |     if (rtemp > pivmax) { | 
 |       pivmax = rtemp;  | 
 |       pivptr = isub; | 
 |     }  | 
 |     if (lsub_ptr[isub] == diagind) diag = isub; | 
 |   } | 
 |    | 
 |   // Test for singularity | 
 |   if ( pivmax <= RealScalar(0.0) ) { | 
 |     // if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero | 
 |     pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr]; | 
 |     perm_r(pivrow) = StorageIndex(jcol); | 
 |     return (jcol+1); | 
 |   } | 
 |    | 
 |   RealScalar thresh = diagpivotthresh * pivmax;  | 
 |    | 
 |   // Choose appropriate pivotal element  | 
 |    | 
 |   { | 
 |     // Test if the diagonal element can be used as a pivot (given the threshold value) | 
 |     if (diag >= 0 )  | 
 |     { | 
 |       // Diagonal element exists | 
 |       using std::abs; | 
 |       rtemp = abs(lu_col_ptr[diag]); | 
 |       if (rtemp != RealScalar(0.0) && rtemp >= thresh) pivptr = diag; | 
 |     } | 
 |     pivrow = lsub_ptr[pivptr]; | 
 |   } | 
 |    | 
 |   // Record pivot row | 
 |   perm_r(pivrow) = StorageIndex(jcol); | 
 |   // Interchange row subscripts | 
 |   if (pivptr != nsupc ) | 
 |   { | 
 |     std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] ); | 
 |     // Interchange numerical values as well, for the two rows in the whole snode | 
 |     // such that L is indexed the same way as A | 
 |     for (icol = 0; icol <= nsupc; icol++) | 
 |     { | 
 |       itemp = pivptr + icol * lda;  | 
 |       std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * lda]); | 
 |     } | 
 |   } | 
 |   // cdiv operations | 
 |   Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc]; | 
 |   for (k = nsupc+1; k < nsupr; k++) | 
 |     lu_col_ptr[k] *= temp;  | 
 |   return 0; | 
 | } | 
 |  | 
 | } // end namespace internal | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // SPARSELU_PIVOTL_H |