| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename MatrixType> void product_selfadjoint(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
 |   typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType; | 
 |  | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3; | 
 |   VectorType v1 = VectorType::Random(rows), | 
 |              v2 = VectorType::Random(rows), | 
 |              v3(rows); | 
 |   RowVectorType r1 = RowVectorType::Random(rows), | 
 |                 r2 = RowVectorType::Random(rows); | 
 |   RhsMatrixType m4 = RhsMatrixType::Random(rows,10); | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(), | 
 |          s2 = internal::random<Scalar>(), | 
 |          s3 = internal::random<Scalar>(); | 
 |  | 
 |   m1 = (m1.adjoint() + m1).eval(); | 
 |  | 
 |   // rank2 update | 
 |   m2 = m1.template triangularView<Lower>(); | 
 |   m2.template selfadjointView<Lower>().rankUpdate(v1,v2); | 
 |   VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix()); | 
 |  | 
 |   m2 = m1.template triangularView<Upper>(); | 
 |   m2.template selfadjointView<Upper>().rankUpdate(-v1,s2*v2,s3); | 
 |   VERIFY_IS_APPROX(m2, (m1 + (s3*(-v1)*(s2*v2).adjoint()+numext::conj(s3)*(s2*v2)*(-v1).adjoint())).template triangularView<Upper>().toDenseMatrix()); | 
 |  | 
 |   m2 = m1.template triangularView<Upper>(); | 
 |   m2.template selfadjointView<Upper>().rankUpdate(-s2*r1.adjoint(),r2.adjoint()*s3,s1); | 
 |   VERIFY_IS_APPROX(m2, (m1 + s1*(-s2*r1.adjoint())*(r2.adjoint()*s3).adjoint() + numext::conj(s1)*(r2.adjoint()*s3) * (-s2*r1.adjoint()).adjoint()).template triangularView<Upper>().toDenseMatrix()); | 
 |  | 
 |   if (rows>1) | 
 |   { | 
 |     m2 = m1.template triangularView<Lower>(); | 
 |     m2.block(1,1,rows-1,cols-1).template selfadjointView<Lower>().rankUpdate(v1.tail(rows-1),v2.head(cols-1)); | 
 |     m3 = m1; | 
 |     m3.block(1,1,rows-1,cols-1) += v1.tail(rows-1) * v2.head(cols-1).adjoint()+ v2.head(cols-1) * v1.tail(rows-1).adjoint(); | 
 |     VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix()); | 
 |   } | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(product_selfadjoint) | 
 | { | 
 |   int s = 0; | 
 |   for(int i = 0; i < g_repeat ; i++) { | 
 |     CALL_SUBTEST_1( product_selfadjoint(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( product_selfadjoint(Matrix<float, 2, 2>()) ); | 
 |     CALL_SUBTEST_3( product_selfadjoint(Matrix3d()) ); | 
 |      | 
 |     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); | 
 |     CALL_SUBTEST_4( product_selfadjoint(MatrixXcf(s, s)) ); | 
 |     TEST_SET_BUT_UNUSED_VARIABLE(s) | 
 |      | 
 |     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); | 
 |     CALL_SUBTEST_5( product_selfadjoint(MatrixXcd(s,s)) ); | 
 |     TEST_SET_BUT_UNUSED_VARIABLE(s) | 
 |      | 
 |     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); | 
 |     CALL_SUBTEST_6( product_selfadjoint(MatrixXd(s,s)) ); | 
 |     TEST_SET_BUT_UNUSED_VARIABLE(s) | 
 |      | 
 |     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); | 
 |     CALL_SUBTEST_7( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s,s)) ); | 
 |     TEST_SET_BUT_UNUSED_VARIABLE(s) | 
 |   } | 
 | } |