| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define TEST_ENABLE_TEMPORARY_TRACKING | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename ArrayType> void vectorwiseop_array(const ArrayType& m) | 
 | { | 
 |   typedef typename ArrayType::Scalar Scalar; | 
 |   typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; | 
 |   typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |   Index r = internal::random<Index>(0, rows-1), | 
 |         c = internal::random<Index>(0, cols-1); | 
 |  | 
 |   ArrayType m1 = ArrayType::Random(rows, cols), | 
 |             m2(rows, cols), | 
 |             m3(rows, cols); | 
 |  | 
 |   ColVectorType colvec = ColVectorType::Random(rows); | 
 |   RowVectorType rowvec = RowVectorType::Random(cols); | 
 |  | 
 |   // test addition | 
 |   m2 = m1; | 
 |   m2.colwise() += colvec; | 
 |   VERIFY_IS_APPROX(m2, m1.colwise() + colvec); | 
 |   VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); | 
 |  | 
 |   m2 = m1; | 
 |   m2.rowwise() += rowvec; | 
 |   VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); | 
 |   VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); | 
 |  | 
 |   // test subtraction | 
 |   m2 = m1; | 
 |   m2.colwise() -= colvec; | 
 |   VERIFY_IS_APPROX(m2, m1.colwise() - colvec); | 
 |   VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); | 
 |  | 
 |   m2 = m1; | 
 |   m2.rowwise() -= rowvec; | 
 |   VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); | 
 |   VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); | 
 |  | 
 |   // test multiplication | 
 |   m2 = m1; | 
 |   m2.colwise() *= colvec; | 
 |   VERIFY_IS_APPROX(m2, m1.colwise() * colvec); | 
 |   VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); | 
 |  | 
 |   m2 = m1; | 
 |   m2.rowwise() *= rowvec; | 
 |   VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); | 
 |   VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); | 
 |  | 
 |   // test quotient | 
 |   m2 = m1; | 
 |   m2.colwise() /= colvec; | 
 |   VERIFY_IS_APPROX(m2, m1.colwise() / colvec); | 
 |   VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); | 
 |  | 
 |   m2 = m1; | 
 |   m2.rowwise() /= rowvec; | 
 |   VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); | 
 |   VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); | 
 |  | 
 |   m2 = m1; | 
 |   // yes, there might be an aliasing issue there but ".rowwise() /=" | 
 |   // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid | 
 |   // evaluating the reduction multiple times | 
 |   if(ArrayType::RowsAtCompileTime>2 || ArrayType::RowsAtCompileTime==Dynamic) | 
 |   { | 
 |     m2.rowwise() /= m2.colwise().sum(); | 
 |     VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum()); | 
 |   } | 
 |  | 
 |   // all/any | 
 |   Array<bool,Dynamic,Dynamic> mb(rows,cols); | 
 |   mb = (m1.real()<=0.7).colwise().all(); | 
 |   VERIFY( (mb.col(c) == (m1.real().col(c)<=0.7).all()).all() ); | 
 |   mb = (m1.real()<=0.7).rowwise().all(); | 
 |   VERIFY( (mb.row(r) == (m1.real().row(r)<=0.7).all()).all() ); | 
 |  | 
 |   mb = (m1.real()>=0.7).colwise().any(); | 
 |   VERIFY( (mb.col(c) == (m1.real().col(c)>=0.7).any()).all() ); | 
 |   mb = (m1.real()>=0.7).rowwise().any(); | 
 |   VERIFY( (mb.row(r) == (m1.real().row(r)>=0.7).any()).all() ); | 
 | } | 
 |  | 
 | template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; | 
 |   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; | 
 |   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType; | 
 |   typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType; | 
 |   typedef Matrix<Scalar,Dynamic,Dynamic> MatrixX; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |   Index r = internal::random<Index>(0, rows-1), | 
 |         c = internal::random<Index>(0, cols-1); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |             m2(rows, cols), | 
 |             m3(rows, cols); | 
 |  | 
 |   ColVectorType colvec = ColVectorType::Random(rows); | 
 |   RowVectorType rowvec = RowVectorType::Random(cols); | 
 |   RealColVectorType rcres; | 
 |   RealRowVectorType rrres; | 
 |  | 
 |   // test broadcast assignment | 
 |   m2 = m1; | 
 |   m2.colwise() = colvec; | 
 |   for(Index j=0; j<cols; ++j) | 
 |     VERIFY_IS_APPROX(m2.col(j), colvec); | 
 |   m2.rowwise() = rowvec; | 
 |   for(Index i=0; i<rows; ++i) | 
 |     VERIFY_IS_APPROX(m2.row(i), rowvec); | 
 |  | 
 |   // test addition | 
 |   m2 = m1; | 
 |   m2.colwise() += colvec; | 
 |   VERIFY_IS_APPROX(m2, m1.colwise() + colvec); | 
 |   VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); | 
 |  | 
 |   m2 = m1; | 
 |   m2.rowwise() += rowvec; | 
 |   VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); | 
 |   VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); | 
 |  | 
 |  | 
 |   // test subtraction | 
 |   m2 = m1; | 
 |   m2.colwise() -= colvec; | 
 |   VERIFY_IS_APPROX(m2, m1.colwise() - colvec); | 
 |   VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); | 
 |  | 
 |   m2 = m1; | 
 |   m2.rowwise() -= rowvec; | 
 |   VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); | 
 |   VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); | 
 |  | 
 |  | 
 |   // ------ partial reductions ------ | 
 |  | 
 |   #define TEST_PARTIAL_REDUX_BASIC(FUNC,ROW,COL,PREPROCESS) {                          \ | 
 |     ROW = m1 PREPROCESS .colwise().FUNC ;                                              \ | 
 |     for(Index k=0; k<cols; ++k) VERIFY_IS_APPROX(ROW(k), m1.col(k) PREPROCESS .FUNC ); \ | 
 |     COL = m1 PREPROCESS .rowwise().FUNC ;                                              \ | 
 |     for(Index k=0; k<rows; ++k) VERIFY_IS_APPROX(COL(k), m1.row(k) PREPROCESS .FUNC ); \ | 
 |   } | 
 |  | 
 |   TEST_PARTIAL_REDUX_BASIC(sum(),        rowvec,colvec,EIGEN_EMPTY); | 
 |   TEST_PARTIAL_REDUX_BASIC(prod(),       rowvec,colvec,EIGEN_EMPTY); | 
 |   TEST_PARTIAL_REDUX_BASIC(mean(),       rowvec,colvec,EIGEN_EMPTY); | 
 |   TEST_PARTIAL_REDUX_BASIC(minCoeff(),   rrres, rcres, .real()); | 
 |   TEST_PARTIAL_REDUX_BASIC(maxCoeff(),   rrres, rcres, .real()); | 
 |   TEST_PARTIAL_REDUX_BASIC(norm(),       rrres, rcres, EIGEN_EMPTY); | 
 |   TEST_PARTIAL_REDUX_BASIC(squaredNorm(),rrres, rcres, EIGEN_EMPTY); | 
 |   TEST_PARTIAL_REDUX_BASIC(redux(internal::scalar_sum_op<Scalar,Scalar>()),rowvec,colvec,EIGEN_EMPTY); | 
 |  | 
 |   VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>()); | 
 |   VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>()); | 
 |   VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm<Infinity>()); | 
 |   VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm<Infinity>()); | 
 |  | 
 |   // regression for bug 1158 | 
 |   VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum()); | 
 |  | 
 |   // test normalized | 
 |   m2 = m1.colwise().normalized(); | 
 |   VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); | 
 |   m2 = m1.rowwise().normalized(); | 
 |   VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); | 
 |  | 
 |   // test normalize | 
 |   m2 = m1; | 
 |   m2.colwise().normalize(); | 
 |   VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); | 
 |   m2 = m1; | 
 |   m2.rowwise().normalize(); | 
 |   VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); | 
 |  | 
 |   // test with partial reduction of products | 
 |   Matrix<Scalar,MatrixType::RowsAtCompileTime,MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose(); | 
 |   VERIFY_IS_APPROX( (m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum()); | 
 |   Matrix<Scalar,1,MatrixType::RowsAtCompileTime> tmp(rows); | 
 |   VERIFY_EVALUATION_COUNT( tmp = (m1 * m1.transpose()).colwise().sum(), 1); | 
 |  | 
 |   m2 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows())).eval(); | 
 |   m1 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows())); | 
 |   VERIFY_IS_APPROX( m1, m2 ); | 
 |   VERIFY_EVALUATION_COUNT( m2 = (m1.rowwise() - m1.colwise().sum()/RealScalar(m1.rows())), (MatrixType::RowsAtCompileTime!=1 ? 1 : 0) ); | 
 |  | 
 |   // test empty expressions | 
 |   VERIFY_IS_APPROX(m1.matrix().middleCols(0,0).rowwise().sum().eval(), MatrixX::Zero(rows,1)); | 
 |   VERIFY_IS_APPROX(m1.matrix().middleRows(0,0).colwise().sum().eval(), MatrixX::Zero(1,cols)); | 
 |   VERIFY_IS_APPROX(m1.matrix().middleCols(0,fix<0>).rowwise().sum().eval(), MatrixX::Zero(rows,1)); | 
 |   VERIFY_IS_APPROX(m1.matrix().middleRows(0,fix<0>).colwise().sum().eval(), MatrixX::Zero(1,cols)); | 
 |  | 
 |   VERIFY_IS_APPROX(m1.matrix().middleCols(0,0).rowwise().prod().eval(), MatrixX::Ones(rows,1)); | 
 |   VERIFY_IS_APPROX(m1.matrix().middleRows(0,0).colwise().prod().eval(), MatrixX::Ones(1,cols)); | 
 |   VERIFY_IS_APPROX(m1.matrix().middleCols(0,fix<0>).rowwise().prod().eval(), MatrixX::Ones(rows,1)); | 
 |   VERIFY_IS_APPROX(m1.matrix().middleRows(0,fix<0>).colwise().prod().eval(), MatrixX::Ones(1,cols)); | 
 |   VERIFY_IS_APPROX(m1.matrix().middleCols(0,0).rowwise().squaredNorm().eval(), MatrixX::Zero(rows,1)); | 
 |  | 
 |   VERIFY_IS_EQUAL(m1.real().middleRows(0,0).rowwise().maxCoeff().eval().rows(),0); | 
 |   VERIFY_IS_EQUAL(m1.real().middleCols(0,0).colwise().maxCoeff().eval().cols(),0); | 
 |   VERIFY_IS_EQUAL(m1.real().middleRows(0,fix<0>).rowwise().maxCoeff().eval().rows(),0); | 
 |   VERIFY_IS_EQUAL(m1.real().middleCols(0,fix<0>).colwise().maxCoeff().eval().cols(),0); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(vectorwiseop) | 
 | { | 
 |   CALL_SUBTEST_1( vectorwiseop_array(Array22cd()) ); | 
 |   CALL_SUBTEST_2( vectorwiseop_array(Array<double, 3, 2>()) ); | 
 |   CALL_SUBTEST_3( vectorwiseop_array(ArrayXXf(3, 4)) ); | 
 |   CALL_SUBTEST_4( vectorwiseop_matrix(Matrix4cf()) ); | 
 |   CALL_SUBTEST_5( vectorwiseop_matrix(Matrix4f()) ); | 
 |   CALL_SUBTEST_5( vectorwiseop_matrix(Vector4f()) ); | 
 |   CALL_SUBTEST_5( vectorwiseop_matrix(Matrix<float,4,5>()) ); | 
 |   CALL_SUBTEST_6( vectorwiseop_matrix(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |   CALL_SUBTEST_7( vectorwiseop_matrix(VectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |   CALL_SUBTEST_7( vectorwiseop_matrix(RowVectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 | } |