|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_DGMRES_H | 
|  | #define EIGEN_DGMRES_H | 
|  |  | 
|  | #include "../../../../Eigen/Eigenvalues" | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template< typename MatrixType_, | 
|  | typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> > | 
|  | class DGMRES; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | struct traits<DGMRES<MatrixType_,Preconditioner_> > | 
|  | { | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef Preconditioner_ Preconditioner; | 
|  | }; | 
|  |  | 
|  | /** \brief Computes a permutation vector to have a sorted sequence | 
|  | * \param vec The vector to reorder. | 
|  | * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1 | 
|  | * \param ncut Put  the ncut smallest elements at the end of the vector | 
|  | * WARNING This is an expensive sort, so should be used only | 
|  | * for small size vectors | 
|  | * TODO Use modified QuickSplit or std::nth_element to get the smallest values | 
|  | */ | 
|  | template <typename VectorType, typename IndexType> | 
|  | void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut) | 
|  | { | 
|  | eigen_assert(vec.size() == perm.size()); | 
|  | bool flag; | 
|  | for (Index k  = 0; k < ncut; k++) | 
|  | { | 
|  | flag = false; | 
|  | for (Index j = 0; j < vec.size()-1; j++) | 
|  | { | 
|  | if ( vec(perm(j)) < vec(perm(j+1)) ) | 
|  | { | 
|  | std::swap(perm(j),perm(j+1)); | 
|  | flag = true; | 
|  | } | 
|  | if (!flag) break; // The vector is in sorted order | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  | /** | 
|  | * \ingroup IterativeLinearSolvers_Module | 
|  | * \brief A Restarted GMRES with deflation. | 
|  | * This class implements a modification of the GMRES solver for | 
|  | * sparse linear systems. The basis is built with modified | 
|  | * Gram-Schmidt. At each restart, a few approximated eigenvectors | 
|  | * corresponding to the smallest eigenvalues are used to build a | 
|  | * preconditioner for the next cycle. This preconditioner | 
|  | * for deflation can be combined with any other preconditioner, | 
|  | * the IncompleteLUT for instance. The preconditioner is applied | 
|  | * at right of the matrix and the combination is multiplicative. | 
|  | * | 
|  | * \tparam MatrixType_ the type of the sparse matrix A, can be a dense or a sparse matrix. | 
|  | * \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner | 
|  | * Typical usage : | 
|  | * \code | 
|  | * SparseMatrix<double> A; | 
|  | * VectorXd x, b; | 
|  | * //Fill A and b ... | 
|  | * DGMRES<SparseMatrix<double> > solver; | 
|  | * solver.set_restart(30); // Set restarting value | 
|  | * solver.setEigenv(1); // Set the number of eigenvalues to deflate | 
|  | * solver.compute(A); | 
|  | * x = solver.solve(b); | 
|  | * \endcode | 
|  | * | 
|  | * DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. | 
|  | * | 
|  | * References : | 
|  | * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid | 
|  | *  Algebraic Solvers for Linear Systems Arising from Compressible | 
|  | *  Flows, Computers and Fluids, In Press, | 
|  | *  https://doi.org/10.1016/j.compfluid.2012.03.023 | 
|  | * [2] K. Burrage and J. Erhel, On the performance of various | 
|  | * adaptive preconditioned GMRES strategies, 5(1998), 101-121. | 
|  | * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES | 
|  | *  preconditioned by deflation,J. Computational and Applied | 
|  | *  Mathematics, 69(1996), 303-318. | 
|  |  | 
|  | * | 
|  | */ | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | class DGMRES : public IterativeSolverBase<DGMRES<MatrixType_,Preconditioner_> > | 
|  | { | 
|  | typedef IterativeSolverBase<DGMRES> Base; | 
|  | using Base::matrix; | 
|  | using Base::m_error; | 
|  | using Base::m_iterations; | 
|  | using Base::m_info; | 
|  | using Base::m_isInitialized; | 
|  | using Base::m_tolerance; | 
|  | public: | 
|  | using Base::_solve_impl; | 
|  | using Base::_solve_with_guess_impl; | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Preconditioner_ Preconditioner; | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
|  | typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix; | 
|  | typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
|  | typedef Matrix<RealScalar,Dynamic,1> DenseRealVector; | 
|  | typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector; | 
|  |  | 
|  |  | 
|  | /** Default constructor. */ | 
|  | DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {} | 
|  |  | 
|  | /** Initialize the solver with matrix \a A for further \c Ax=b solving. | 
|  | * | 
|  | * This constructor is a shortcut for the default constructor followed | 
|  | * by a call to compute(). | 
|  | * | 
|  | * \warning this class stores a reference to the matrix A as well as some | 
|  | * precomputed values that depend on it. Therefore, if \a A is changed | 
|  | * this class becomes invalid. Call compute() to update it with the new | 
|  | * matrix A, or modify a copy of A. | 
|  | */ | 
|  | template<typename MatrixDerived> | 
|  | explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {} | 
|  |  | 
|  | ~DGMRES() {} | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Rhs::ColsAtCompileTime==1 || Dest::ColsAtCompileTime==1, YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX); | 
|  |  | 
|  | m_iterations = Base::maxIterations(); | 
|  | m_error = Base::m_tolerance; | 
|  |  | 
|  | dgmres(matrix(), b, x, Base::m_preconditioner); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the restart value | 
|  | */ | 
|  | Index restart() { return m_restart; } | 
|  |  | 
|  | /** | 
|  | * Set the restart value (default is 30) | 
|  | */ | 
|  | void set_restart(const Index restart) { m_restart=restart; } | 
|  |  | 
|  | /** | 
|  | * Set the number of eigenvalues to deflate at each restart | 
|  | */ | 
|  | void setEigenv(const Index neig) | 
|  | { | 
|  | m_neig = neig; | 
|  | if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the size of the deflation subspace size | 
|  | */ | 
|  | Index deflSize() {return m_r; } | 
|  |  | 
|  | /** | 
|  | * Set the maximum size of the deflation subspace | 
|  | */ | 
|  | void setMaxEigenv(const Index maxNeig) { m_maxNeig = maxNeig; } | 
|  |  | 
|  | protected: | 
|  | // DGMRES algorithm | 
|  | template<typename Rhs, typename Dest> | 
|  | void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const; | 
|  | // Perform one cycle of GMRES | 
|  | template<typename Dest> | 
|  | Index dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const; | 
|  | // Compute data to use for deflation | 
|  | Index dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const; | 
|  | // Apply deflation to a vector | 
|  | template<typename RhsType, typename DestType> | 
|  | Index dgmresApplyDeflation(const RhsType& In, DestType& Out) const; | 
|  | ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const; | 
|  | ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const; | 
|  | // Init data for deflation | 
|  | void dgmresInitDeflation(Index& rows) const; | 
|  | mutable DenseMatrix m_V; // Krylov basis vectors | 
|  | mutable DenseMatrix m_H; // Hessenberg matrix | 
|  | mutable DenseMatrix m_Hes; // Initial hessenberg matrix without Givens rotations applied | 
|  | mutable Index m_restart; // Maximum size of the Krylov subspace | 
|  | mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace | 
|  | mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles) | 
|  | mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */ | 
|  | mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T | 
|  | mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart | 
|  | mutable Index m_r; // Current number of deflated eigenvalues, size of m_U | 
|  | mutable Index m_maxNeig; // Maximum number of eigenvalues to deflate | 
|  | mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A | 
|  | mutable bool m_isDeflAllocated; | 
|  | mutable bool m_isDeflInitialized; | 
|  |  | 
|  | //Adaptive strategy | 
|  | mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed | 
|  | mutable bool m_force; // Force the use of deflation at each restart | 
|  |  | 
|  | }; | 
|  | /** | 
|  | * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt, | 
|  | * | 
|  | * A right preconditioner is used combined with deflation. | 
|  | * | 
|  | */ | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | template<typename Rhs, typename Dest> | 
|  | void DGMRES<MatrixType_, Preconditioner_>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, | 
|  | const Preconditioner& precond) const | 
|  | { | 
|  | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | 
|  |  | 
|  | RealScalar normRhs = rhs.norm(); | 
|  | if(normRhs <= considerAsZero) | 
|  | { | 
|  | x.setZero(); | 
|  | m_error = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | //Initialization | 
|  | m_isDeflInitialized = false; | 
|  | Index n = mat.rows(); | 
|  | DenseVector r0(n); | 
|  | Index nbIts = 0; | 
|  | m_H.resize(m_restart+1, m_restart); | 
|  | m_Hes.resize(m_restart, m_restart); | 
|  | m_V.resize(n,m_restart+1); | 
|  | //Initial residual vector and initial norm | 
|  | if(x.squaredNorm()==0) | 
|  | x = precond.solve(rhs); | 
|  | r0 = rhs - mat * x; | 
|  | RealScalar beta = r0.norm(); | 
|  |  | 
|  | m_error = beta/normRhs; | 
|  | if(m_error < m_tolerance) | 
|  | m_info = Success; | 
|  | else | 
|  | m_info = NoConvergence; | 
|  |  | 
|  | // Iterative process | 
|  | while (nbIts < m_iterations && m_info == NoConvergence) | 
|  | { | 
|  | dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts); | 
|  |  | 
|  | // Compute the new residual vector for the restart | 
|  | if (nbIts < m_iterations && m_info == NoConvergence) { | 
|  | r0 = rhs - mat * x; | 
|  | beta = r0.norm(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief Perform one restart cycle of DGMRES | 
|  | * \param mat The coefficient matrix | 
|  | * \param precond The preconditioner | 
|  | * \param x the new approximated solution | 
|  | * \param r0 The initial residual vector | 
|  | * \param beta The norm of the residual computed so far | 
|  | * \param normRhs The norm of the right hand side vector | 
|  | * \param nbIts The number of iterations | 
|  | */ | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | template<typename Dest> | 
|  | Index DGMRES<MatrixType_, Preconditioner_>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const | 
|  | { | 
|  | //Initialization | 
|  | DenseVector g(m_restart+1); // Right hand side of the least square problem | 
|  | g.setZero(); | 
|  | g(0) = Scalar(beta); | 
|  | m_V.col(0) = r0/beta; | 
|  | m_info = NoConvergence; | 
|  | std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations | 
|  | Index it = 0; // Number of inner iterations | 
|  | Index n = mat.rows(); | 
|  | DenseVector tv1(n), tv2(n);  //Temporary vectors | 
|  | while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations) | 
|  | { | 
|  | // Apply preconditioner(s) at right | 
|  | if (m_isDeflInitialized ) | 
|  | { | 
|  | dgmresApplyDeflation(m_V.col(it), tv1); // Deflation | 
|  | tv2 = precond.solve(tv1); | 
|  | } | 
|  | else | 
|  | { | 
|  | tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner | 
|  | } | 
|  | tv1 = mat * tv2; | 
|  |  | 
|  | // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt | 
|  | Scalar coef; | 
|  | for (Index i = 0; i <= it; ++i) | 
|  | { | 
|  | coef = tv1.dot(m_V.col(i)); | 
|  | tv1 = tv1 - coef * m_V.col(i); | 
|  | m_H(i,it) = coef; | 
|  | m_Hes(i,it) = coef; | 
|  | } | 
|  | // Normalize the vector | 
|  | coef = tv1.norm(); | 
|  | m_V.col(it+1) = tv1/coef; | 
|  | m_H(it+1, it) = coef; | 
|  | //     m_Hes(it+1,it) = coef; | 
|  |  | 
|  | // FIXME Check for happy breakdown | 
|  |  | 
|  | // Update Hessenberg matrix with Givens rotations | 
|  | for (Index i = 1; i <= it; ++i) | 
|  | { | 
|  | m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint()); | 
|  | } | 
|  | // Compute the new plane rotation | 
|  | gr[it].makeGivens(m_H(it, it), m_H(it+1,it)); | 
|  | // Apply the new rotation | 
|  | m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint()); | 
|  | g.applyOnTheLeft(it,it+1, gr[it].adjoint()); | 
|  |  | 
|  | beta = std::abs(g(it+1)); | 
|  | m_error = beta/normRhs; | 
|  | // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl; | 
|  | it++; nbIts++; | 
|  |  | 
|  | if (m_error < m_tolerance) | 
|  | { | 
|  | // The method has converged | 
|  | m_info = Success; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the new coefficients by solving the least square problem | 
|  | //   it++; | 
|  | //FIXME  Check first if the matrix is singular ... zero diagonal | 
|  | DenseVector nrs(m_restart); | 
|  | nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it)); | 
|  |  | 
|  | // Form the new solution | 
|  | if (m_isDeflInitialized) | 
|  | { | 
|  | tv1 = m_V.leftCols(it) * nrs; | 
|  | dgmresApplyDeflation(tv1, tv2); | 
|  | x = x + precond.solve(tv2); | 
|  | } | 
|  | else | 
|  | x = x + precond.solve(m_V.leftCols(it) * nrs); | 
|  |  | 
|  | // Go for a new cycle and compute data for deflation | 
|  | if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig) | 
|  | dgmresComputeDeflationData(mat, precond, it, m_neig); | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | void DGMRES<MatrixType_, Preconditioner_>::dgmresInitDeflation(Index& rows) const | 
|  | { | 
|  | m_U.resize(rows, m_maxNeig); | 
|  | m_MU.resize(rows, m_maxNeig); | 
|  | m_T.resize(m_maxNeig, m_maxNeig); | 
|  | m_lambdaN = 0.0; | 
|  | m_isDeflAllocated = true; | 
|  | } | 
|  |  | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | inline typename DGMRES<MatrixType_, Preconditioner_>::ComplexVector DGMRES<MatrixType_, Preconditioner_>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const | 
|  | { | 
|  | return schurofH.matrixT().diagonal(); | 
|  | } | 
|  |  | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | inline typename DGMRES<MatrixType_, Preconditioner_>::ComplexVector DGMRES<MatrixType_, Preconditioner_>::schurValues(const RealSchur<DenseMatrix>& schurofH) const | 
|  | { | 
|  | const DenseMatrix& T = schurofH.matrixT(); | 
|  | Index it = T.rows(); | 
|  | ComplexVector eig(it); | 
|  | Index j = 0; | 
|  | while (j < it-1) | 
|  | { | 
|  | if (T(j+1,j) ==Scalar(0)) | 
|  | { | 
|  | eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0)); | 
|  | j++; | 
|  | } | 
|  | else | 
|  | { | 
|  | eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j)); | 
|  | eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1)); | 
|  | j++; | 
|  | } | 
|  | } | 
|  | if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0)); | 
|  | return eig; | 
|  | } | 
|  |  | 
|  | template< typename MatrixType_, typename Preconditioner_> | 
|  | Index DGMRES<MatrixType_, Preconditioner_>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const | 
|  | { | 
|  | // First, find the Schur form of the Hessenberg matrix H | 
|  | typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH; | 
|  | bool computeU = true; | 
|  | DenseMatrix matrixQ(it,it); | 
|  | matrixQ.setIdentity(); | 
|  | schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU); | 
|  |  | 
|  | ComplexVector eig(it); | 
|  | Matrix<StorageIndex,Dynamic,1>perm(it); | 
|  | eig = this->schurValues(schurofH); | 
|  |  | 
|  | // Reorder the absolute values of Schur values | 
|  | DenseRealVector modulEig(it); | 
|  | for (Index j=0; j<it; ++j) modulEig(j) = std::abs(eig(j)); | 
|  | perm.setLinSpaced(it,0,internal::convert_index<StorageIndex>(it-1)); | 
|  | internal::sortWithPermutation(modulEig, perm, neig); | 
|  |  | 
|  | if (!m_lambdaN) | 
|  | { | 
|  | m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN); | 
|  | } | 
|  | //Count the real number of extracted eigenvalues (with complex conjugates) | 
|  | Index nbrEig = 0; | 
|  | while (nbrEig < neig) | 
|  | { | 
|  | if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++; | 
|  | else nbrEig += 2; | 
|  | } | 
|  | // Extract the  Schur vectors corresponding to the smallest Ritz values | 
|  | DenseMatrix Sr(it, nbrEig); | 
|  | Sr.setZero(); | 
|  | for (Index j = 0; j < nbrEig; j++) | 
|  | { | 
|  | Sr.col(j) = schurofH.matrixU().col(perm(it-j-1)); | 
|  | } | 
|  |  | 
|  | // Form the Schur vectors of the initial matrix using the Krylov basis | 
|  | DenseMatrix X; | 
|  | X = m_V.leftCols(it) * Sr; | 
|  | if (m_r) | 
|  | { | 
|  | // Orthogonalize X against m_U using modified Gram-Schmidt | 
|  | for (Index j = 0; j < nbrEig; j++) | 
|  | for (Index k =0; k < m_r; k++) | 
|  | X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k); | 
|  | } | 
|  |  | 
|  | // Compute m_MX = A * M^-1 * X | 
|  | Index m = m_V.rows(); | 
|  | if (!m_isDeflAllocated) | 
|  | dgmresInitDeflation(m); | 
|  | DenseMatrix MX(m, nbrEig); | 
|  | DenseVector tv1(m); | 
|  | for (Index j = 0; j < nbrEig; j++) | 
|  | { | 
|  | tv1 = mat * X.col(j); | 
|  | MX.col(j) = precond.solve(tv1); | 
|  | } | 
|  |  | 
|  | //Update m_T = [U'MU U'MX; X'MU X'MX] | 
|  | m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX; | 
|  | if(m_r) | 
|  | { | 
|  | m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX; | 
|  | m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r); | 
|  | } | 
|  |  | 
|  | // Save X into m_U and m_MX in m_MU | 
|  | for (Index j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j); | 
|  | for (Index j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j); | 
|  | // Increase the size of the invariant subspace | 
|  | m_r += nbrEig; | 
|  |  | 
|  | // Factorize m_T into m_luT | 
|  | m_luT.compute(m_T.topLeftCorner(m_r, m_r)); | 
|  |  | 
|  | //FIXME CHeck if the factorization was correctly done (nonsingular matrix) | 
|  | m_isDeflInitialized = true; | 
|  | return 0; | 
|  | } | 
|  | template<typename MatrixType_, typename Preconditioner_> | 
|  | template<typename RhsType, typename DestType> | 
|  | Index DGMRES<MatrixType_, Preconditioner_>::dgmresApplyDeflation(const RhsType &x, DestType &y) const | 
|  | { | 
|  | DenseVector x1 = m_U.leftCols(m_r).transpose() * x; | 
|  | y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  | #endif |