|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/Polynomials> | 
|  | #include <iostream> | 
|  |  | 
|  | using namespace std; | 
|  |  | 
|  | namespace Eigen { | 
|  | namespace internal { | 
|  | template<int Size> | 
|  | struct increment_if_fixed_size | 
|  | { | 
|  | enum { | 
|  | ret = (Size == Dynamic) ? Dynamic : Size+1 | 
|  | }; | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar_, int _Deg> | 
|  | void realRoots_to_monicPolynomial_test(int deg) | 
|  | { | 
|  | typedef internal::increment_if_fixed_size<_Deg>            Dim; | 
|  | typedef Matrix<Scalar_,Dim::ret,1>                  PolynomialType; | 
|  | typedef Matrix<Scalar_,_Deg,1>                      EvalRootsType; | 
|  |  | 
|  | PolynomialType pols(deg+1); | 
|  | EvalRootsType roots = EvalRootsType::Random(deg); | 
|  | roots_to_monicPolynomial( roots, pols ); | 
|  |  | 
|  | EvalRootsType evr( deg ); | 
|  | for( int i=0; i<roots.size(); ++i ){ | 
|  | evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } | 
|  |  | 
|  | bool evalToZero = evr.isZero( test_precision<Scalar_>() ); | 
|  | if( !evalToZero ){ | 
|  | cerr << evr.transpose() << endl; } | 
|  | VERIFY( evalToZero ); | 
|  | } | 
|  |  | 
|  | template<typename Scalar_> void realRoots_to_monicPolynomial_scalar() | 
|  | { | 
|  | CALL_SUBTEST_2( (realRoots_to_monicPolynomial_test<Scalar_,2>(2)) ); | 
|  | CALL_SUBTEST_3( (realRoots_to_monicPolynomial_test<Scalar_,3>(3)) ); | 
|  | CALL_SUBTEST_4( (realRoots_to_monicPolynomial_test<Scalar_,4>(4)) ); | 
|  | CALL_SUBTEST_5( (realRoots_to_monicPolynomial_test<Scalar_,5>(5)) ); | 
|  | CALL_SUBTEST_6( (realRoots_to_monicPolynomial_test<Scalar_,6>(6)) ); | 
|  | CALL_SUBTEST_7( (realRoots_to_monicPolynomial_test<Scalar_,7>(7)) ); | 
|  | CALL_SUBTEST_8( (realRoots_to_monicPolynomial_test<Scalar_,17>(17)) ); | 
|  |  | 
|  | CALL_SUBTEST_9( (realRoots_to_monicPolynomial_test<Scalar_,Dynamic>( | 
|  | internal::random<int>(18,26) )) ); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | template<typename Scalar_, int _Deg> | 
|  | void CauchyBounds(int deg) | 
|  | { | 
|  | typedef internal::increment_if_fixed_size<_Deg>            Dim; | 
|  | typedef Matrix<Scalar_,Dim::ret,1>                  PolynomialType; | 
|  | typedef Matrix<Scalar_,_Deg,1>                      EvalRootsType; | 
|  |  | 
|  | PolynomialType pols(deg+1); | 
|  | EvalRootsType roots = EvalRootsType::Random(deg); | 
|  | roots_to_monicPolynomial( roots, pols ); | 
|  | Scalar_ M = cauchy_max_bound( pols ); | 
|  | Scalar_ m = cauchy_min_bound( pols ); | 
|  | Scalar_ Max = roots.array().abs().maxCoeff(); | 
|  | Scalar_ min = roots.array().abs().minCoeff(); | 
|  | bool eval = (M >= Max) && (m <= min); | 
|  | if( !eval ) | 
|  | { | 
|  | cerr << "Roots: " << roots << endl; | 
|  | cerr << "Bounds: (" << m << ", " << M << ")" << endl; | 
|  | cerr << "Min,Max: (" << min << ", " << Max << ")" << endl; | 
|  | } | 
|  | VERIFY( eval ); | 
|  | } | 
|  |  | 
|  | template<typename Scalar_> void CauchyBounds_scalar() | 
|  | { | 
|  | CALL_SUBTEST_2( (CauchyBounds<Scalar_,2>(2)) ); | 
|  | CALL_SUBTEST_3( (CauchyBounds<Scalar_,3>(3)) ); | 
|  | CALL_SUBTEST_4( (CauchyBounds<Scalar_,4>(4)) ); | 
|  | CALL_SUBTEST_5( (CauchyBounds<Scalar_,5>(5)) ); | 
|  | CALL_SUBTEST_6( (CauchyBounds<Scalar_,6>(6)) ); | 
|  | CALL_SUBTEST_7( (CauchyBounds<Scalar_,7>(7)) ); | 
|  | CALL_SUBTEST_8( (CauchyBounds<Scalar_,17>(17)) ); | 
|  |  | 
|  | CALL_SUBTEST_9( (CauchyBounds<Scalar_,Dynamic>( | 
|  | internal::random<int>(18,26) )) ); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(polynomialutils) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) | 
|  | { | 
|  | realRoots_to_monicPolynomial_scalar<double>(); | 
|  | realRoots_to_monicPolynomial_scalar<float>(); | 
|  | CauchyBounds_scalar<double>(); | 
|  | CauchyBounds_scalar<float>(); | 
|  | } | 
|  | } |