blob: ae6373dda2d2b75c3b8be9ef5e0fff5edeb21ccd [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARITHMETIC_SEQUENCE_H
#define EIGEN_ARITHMETIC_SEQUENCE_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
// Helper to cleanup the type of the increment:
template <typename T>
struct cleanup_seq_incr {
typedef typename cleanup_index_type<T, DynamicIndex>::type type;
};
} // namespace internal
//--------------------------------------------------------------------------------
// seq(first,last,incr) and seqN(first,size,incr)
//--------------------------------------------------------------------------------
template <typename FirstType = Index, typename SizeType = Index, typename IncrType = internal::FixedInt<1> >
class ArithmeticSequence;
template <typename FirstType, typename SizeType, typename IncrType>
ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type,
typename internal::cleanup_index_type<SizeType>::type,
typename internal::cleanup_seq_incr<IncrType>::type>
seqN(FirstType first, SizeType size, IncrType incr);
/** \class ArithmeticSequence
* \ingroup Core_Module
*
* This class represents an arithmetic progression \f$ a_0, a_1, a_2, ..., a_{n-1}\f$ defined by
* its \em first value \f$ a_0 \f$, its \em size (aka length) \em n, and the \em increment (aka stride)
* that is equal to \f$ a_{i+1}-a_{i}\f$ for any \em i.
*
* It is internally used as the return type of the Eigen::seq and Eigen::seqN functions, and as the input arguments
* of DenseBase::operator()(const RowIndices&, const ColIndices&), and most of the time this is the
* only way it is used.
*
* \tparam FirstType type of the first element, usually an Index,
* but internally it can be a symbolic expression
* \tparam SizeType type representing the size of the sequence, usually an Index
* or a compile time integral constant. Internally, it can also be a symbolic expression
* \tparam IncrType type of the increment, can be a runtime Index, or a compile time integral constant (default is
* compile-time 1)
*
* \sa Eigen::seq, Eigen::seqN, DenseBase::operator()(const RowIndices&, const ColIndices&), class IndexedView
*/
template <typename FirstType, typename SizeType, typename IncrType>
class ArithmeticSequence {
public:
constexpr ArithmeticSequence() = default;
constexpr ArithmeticSequence(FirstType first, SizeType size) : m_first(first), m_size(size) {}
constexpr ArithmeticSequence(FirstType first, SizeType size, IncrType incr)
: m_first(first), m_size(size), m_incr(incr) {}
enum {
// SizeAtCompileTime = internal::get_fixed_value<SizeType>::value,
IncrAtCompileTime = internal::get_fixed_value<IncrType, DynamicIndex>::value
};
/** \returns the size, i.e., number of elements, of the sequence */
constexpr Index size() const { return m_size; }
/** \returns the first element \f$ a_0 \f$ in the sequence */
constexpr Index first() const { return m_first; }
/** \returns the value \f$ a_i \f$ at index \a i in the sequence. */
constexpr Index operator[](Index i) const { return m_first + i * m_incr; }
constexpr const FirstType& firstObject() const { return m_first; }
constexpr const SizeType& sizeObject() const { return m_size; }
constexpr const IncrType& incrObject() const { return m_incr; }
protected:
FirstType m_first;
SizeType m_size;
IncrType m_incr;
public:
constexpr auto reverse() const -> decltype(Eigen::seqN(m_first + (m_size + fix<-1>()) * m_incr, m_size, -m_incr)) {
return seqN(m_first + (m_size + fix<-1>()) * m_incr, m_size, -m_incr);
}
};
/** \returns an ArithmeticSequence starting at \a first, of length \a size, and increment \a incr
*
* \sa seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType) */
template <typename FirstType, typename SizeType, typename IncrType>
ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type,
typename internal::cleanup_index_type<SizeType>::type,
typename internal::cleanup_seq_incr<IncrType>::type>
seqN(FirstType first, SizeType size, IncrType incr) {
return ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type,
typename internal::cleanup_index_type<SizeType>::type,
typename internal::cleanup_seq_incr<IncrType>::type>(first, size, incr);
}
/** \returns an ArithmeticSequence starting at \a first, of length \a size, and unit increment
*
* \sa seqN(FirstType,SizeType,IncrType), seq(FirstType,LastType) */
template <typename FirstType, typename SizeType>
ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type,
typename internal::cleanup_index_type<SizeType>::type>
seqN(FirstType first, SizeType size) {
return ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type,
typename internal::cleanup_index_type<SizeType>::type>(first, size);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \returns an ArithmeticSequence starting at \a f, up (or down) to \a l, and with positive (or negative) increment \a
* incr
*
* It is essentially an alias to:
* \code
* seqN(f, (l-f+incr)/incr, incr);
* \endcode
*
* \sa seqN(FirstType,SizeType,IncrType), seq(FirstType,LastType)
*/
template <typename FirstType, typename LastType, typename IncrType>
auto seq(FirstType f, LastType l, IncrType incr);
/** \returns an ArithmeticSequence starting at \a f, up (or down) to \a l, and unit increment
*
* It is essentially an alias to:
* \code
* seqN(f,l-f+1);
* \endcode
*
* \sa seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType)
*/
template <typename FirstType, typename LastType>
auto seq(FirstType f, LastType l);
#else // EIGEN_PARSED_BY_DOXYGEN
template <typename FirstType, typename LastType>
auto seq(FirstType f, LastType l)
-> decltype(seqN(typename internal::cleanup_index_type<FirstType>::type(f),
(typename internal::cleanup_index_type<LastType>::type(l) -
typename internal::cleanup_index_type<FirstType>::type(f) + fix<1>()))) {
return seqN(typename internal::cleanup_index_type<FirstType>::type(f),
(typename internal::cleanup_index_type<LastType>::type(l) -
typename internal::cleanup_index_type<FirstType>::type(f) + fix<1>()));
}
template <typename FirstType, typename LastType, typename IncrType>
auto seq(FirstType f, LastType l, IncrType incr)
-> decltype(seqN(typename internal::cleanup_index_type<FirstType>::type(f),
(typename internal::cleanup_index_type<LastType>::type(l) -
typename internal::cleanup_index_type<FirstType>::type(f) +
typename internal::cleanup_seq_incr<IncrType>::type(incr)) /
typename internal::cleanup_seq_incr<IncrType>::type(incr),
typename internal::cleanup_seq_incr<IncrType>::type(incr))) {
typedef typename internal::cleanup_seq_incr<IncrType>::type CleanedIncrType;
return seqN(typename internal::cleanup_index_type<FirstType>::type(f),
(typename internal::cleanup_index_type<LastType>::type(l) -
typename internal::cleanup_index_type<FirstType>::type(f) + CleanedIncrType(incr)) /
CleanedIncrType(incr),
CleanedIncrType(incr));
}
#endif // EIGEN_PARSED_BY_DOXYGEN
namespace placeholders {
/** \cpp11
* \returns a symbolic ArithmeticSequence representing the last \a size elements with increment \a incr.
*
* It is a shortcut for: \code seqN(last-(size-fix<1>)*incr, size, incr) \endcode
*
* \sa lastN(SizeType), seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType) */
template <typename SizeType, typename IncrType>
auto lastN(SizeType size, IncrType incr)
-> decltype(seqN(Eigen::placeholders::last - (size - fix<1>()) * incr, size, incr)) {
return seqN(Eigen::placeholders::last - (size - fix<1>()) * incr, size, incr);
}
/** \cpp11
* \returns a symbolic ArithmeticSequence representing the last \a size elements with a unit increment.
*
* It is a shortcut for: \code seq(last+fix<1>-size, last) \endcode
*
* \sa lastN(SizeType,IncrType, seqN(FirstType,SizeType), seq(FirstType,LastType) */
template <typename SizeType>
auto lastN(SizeType size) -> decltype(seqN(Eigen::placeholders::last + fix<1>() - size, size)) {
return seqN(Eigen::placeholders::last + fix<1>() - size, size);
}
} // namespace placeholders
/** \namespace Eigen::indexing
* \ingroup Core_Module
*
* The sole purpose of this namespace is to be able to import all functions
* and symbols that are expected to be used within operator() for indexing
* and slicing. If you already imported the whole Eigen namespace:
* \code using namespace Eigen; \endcode
* then you are already all set. Otherwise, if you don't want/cannot import
* the whole Eigen namespace, the following line:
* \code using namespace Eigen::indexing; \endcode
* is equivalent to:
* \code
using Eigen::fix;
using Eigen::seq;
using Eigen::seqN;
using Eigen::placeholders::all;
using Eigen::placeholders::last;
using Eigen::placeholders::lastN; // c++11 only
using Eigen::placeholders::lastp1;
\endcode
*/
namespace indexing {
using Eigen::fix;
using Eigen::seq;
using Eigen::seqN;
using Eigen::placeholders::all;
using Eigen::placeholders::last;
using Eigen::placeholders::lastN;
using Eigen::placeholders::lastp1;
} // namespace indexing
} // end namespace Eigen
#endif // EIGEN_ARITHMETIC_SEQUENCE_H