blob: fd61bb7931c045ff8af41df493247f3694ee4f3c [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONALMATRIX_H
#define EIGEN_DIAGONALMATRIX_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \class DiagonalBase
* \ingroup Core_Module
*
* \brief Base class for diagonal matrices and expressions
*
* This is the base class that is inherited by diagonal matrix and related expression
* types, which internally use a vector for storing the diagonal entries. Diagonal
* types always represent square matrices.
*
* \tparam Derived is the derived type, a DiagonalMatrix or DiagonalWrapper.
*
* \sa class DiagonalMatrix, class DiagonalWrapper
*/
template <typename Derived>
class DiagonalBase : public EigenBase<Derived> {
public:
typedef typename internal::traits<Derived>::DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::RealScalar RealScalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
IsVectorAtCompileTime = 0,
Flags = NoPreferredStorageOrderBit
};
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime>
DenseMatrixType;
typedef DenseMatrixType DenseType;
typedef DiagonalMatrix<Scalar, DiagonalVectorType::SizeAtCompileTime, DiagonalVectorType::MaxSizeAtCompileTime>
PlainObject;
/** \returns a reference to the derived object. */
EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** \returns a const reference to the derived object. */
EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast<Derived*>(this); }
/**
* Constructs a dense matrix from \c *this. Note, this directly returns a dense matrix type,
* not an expression.
* \returns A dense matrix, with its diagonal entries set from the the derived object. */
EIGEN_DEVICE_FUNC DenseMatrixType toDenseMatrix() const { return derived(); }
/** \returns a reference to the derived object's vector of diagonal coefficients. */
EIGEN_DEVICE_FUNC inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
/** \returns a const reference to the derived object's vector of diagonal coefficients. */
EIGEN_DEVICE_FUNC inline DiagonalVectorType& diagonal() { return derived().diagonal(); }
/** \returns the value of the coefficient as if \c *this was a dense matrix. */
EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const {
eigen_assert(row >= 0 && col >= 0 && row < rows() && col <= cols());
return row == col ? diagonal().coeff(row) : Scalar(0);
}
/** \returns the number of rows. */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const { return diagonal().size(); }
/** \returns the number of columns. */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const { return diagonal().size(); }
/** \returns the diagonal matrix product of \c *this by the dense matrix, \a matrix */
template <typename MatrixDerived>
EIGEN_DEVICE_FUNC const Product<Derived, MatrixDerived, LazyProduct> operator*(
const MatrixBase<MatrixDerived>& matrix) const {
return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived());
}
template <typename OtherDerived>
using DiagonalProductReturnType = DiagonalWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
DiagonalVectorType, typename OtherDerived::DiagonalVectorType, product)>;
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a other */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC const DiagonalProductReturnType<OtherDerived> operator*(
const DiagonalBase<OtherDerived>& other) const {
return diagonal().cwiseProduct(other.diagonal()).asDiagonal();
}
using DiagonalInverseReturnType =
DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType>>;
/** \returns the inverse \c *this. Computed as the coefficient-wise inverse of the diagonal. */
EIGEN_DEVICE_FUNC inline const DiagonalInverseReturnType inverse() const {
return diagonal().cwiseInverse().asDiagonal();
}
using DiagonalScaleReturnType =
DiagonalWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DiagonalVectorType, Scalar, product)>;
/** \returns the product of \c *this by the scalar \a scalar */
EIGEN_DEVICE_FUNC inline const DiagonalScaleReturnType operator*(const Scalar& scalar) const {
return (diagonal() * scalar).asDiagonal();
}
using ScaleDiagonalReturnType =
DiagonalWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar, DiagonalVectorType, product)>;
/** \returns the product of a scalar and the diagonal matrix \a other */
EIGEN_DEVICE_FUNC friend inline const ScaleDiagonalReturnType operator*(const Scalar& scalar,
const DiagonalBase& other) {
return (scalar * other.diagonal()).asDiagonal();
}
template <typename OtherDerived>
using DiagonalSumReturnType = DiagonalWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
DiagonalVectorType, typename OtherDerived::DiagonalVectorType, sum)>;
/** \returns the sum of \c *this and the diagonal matrix \a other */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline const DiagonalSumReturnType<OtherDerived> operator+(
const DiagonalBase<OtherDerived>& other) const {
return (diagonal() + other.diagonal()).asDiagonal();
}
template <typename OtherDerived>
using DiagonalDifferenceReturnType = DiagonalWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
DiagonalVectorType, typename OtherDerived::DiagonalVectorType, difference)>;
/** \returns the difference of \c *this and the diagonal matrix \a other */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline const DiagonalDifferenceReturnType<OtherDerived> operator-(
const DiagonalBase<OtherDerived>& other) const {
return (diagonal() - other.diagonal()).asDiagonal();
}
};
/** \class DiagonalMatrix
* \ingroup Core_Module
*
* \brief Represents a diagonal matrix with its storage
*
* \tparam Scalar_ the type of coefficients
* \tparam SizeAtCompileTime the dimension of the matrix, or Dynamic
* \tparam MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
* to SizeAtCompileTime. Most of the time, you do not need to specify it.
*
* \sa class DiagonalBase, class DiagonalWrapper
*/
namespace internal {
template <typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct traits<DiagonalMatrix<Scalar_, SizeAtCompileTime, MaxSizeAtCompileTime>>
: traits<Matrix<Scalar_, SizeAtCompileTime, SizeAtCompileTime, 0, MaxSizeAtCompileTime, MaxSizeAtCompileTime>> {
typedef Matrix<Scalar_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> DiagonalVectorType;
typedef DiagonalShape StorageKind;
enum { Flags = LvalueBit | NoPreferredStorageOrderBit | NestByRefBit };
};
} // namespace internal
template <typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime>
class DiagonalMatrix : public DiagonalBase<DiagonalMatrix<Scalar_, SizeAtCompileTime, MaxSizeAtCompileTime>> {
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename internal::traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
typedef const DiagonalMatrix& Nested;
typedef Scalar_ Scalar;
typedef typename internal::traits<DiagonalMatrix>::StorageKind StorageKind;
typedef typename internal::traits<DiagonalMatrix>::StorageIndex StorageIndex;
#endif
protected:
DiagonalVectorType m_diagonal;
public:
/** const version of diagonal(). */
EIGEN_DEVICE_FUNC inline const DiagonalVectorType& diagonal() const { return m_diagonal; }
/** \returns a reference to the stored vector of diagonal coefficients. */
EIGEN_DEVICE_FUNC inline DiagonalVectorType& diagonal() { return m_diagonal; }
/** Default constructor without initialization */
EIGEN_DEVICE_FUNC inline DiagonalMatrix() {}
/** Constructs a diagonal matrix with given dimension */
EIGEN_DEVICE_FUNC explicit inline DiagonalMatrix(Index dim) : m_diagonal(dim) {}
/** 2D constructor. */
EIGEN_DEVICE_FUNC inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x, y) {}
/** 3D constructor. */
EIGEN_DEVICE_FUNC inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x, y, z) {}
/** \brief Construct a diagonal matrix with fixed size from an arbitrary number of coefficients.
*
* \warning To construct a diagonal matrix of fixed size, the number of values passed to this
* constructor must match the fixed dimension of \c *this.
*
* \sa DiagonalMatrix(const Scalar&, const Scalar&)
* \sa DiagonalMatrix(const Scalar&, const Scalar&, const Scalar&)
*/
template <typename... ArgTypes>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DiagonalMatrix(const Scalar& a0, const Scalar& a1, const Scalar& a2,
const ArgTypes&... args)
: m_diagonal(a0, a1, a2, args...) {}
/** \brief Constructs a DiagonalMatrix and initializes it by elements given by an initializer list of initializer
* lists \cpp11
*/
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE DiagonalMatrix(
const std::initializer_list<std::initializer_list<Scalar>>& list)
: m_diagonal(list) {}
/** \brief Constructs a DiagonalMatrix from an r-value diagonal vector type */
EIGEN_DEVICE_FUNC explicit inline DiagonalMatrix(DiagonalVectorType&& diag) : m_diagonal(std::move(diag)) {}
/** Copy constructor. */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline DiagonalMatrix(const DiagonalBase<OtherDerived>& other) : m_diagonal(other.diagonal()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {}
#endif
/** generic constructor from expression of the diagonal coefficients */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC explicit inline DiagonalMatrix(const MatrixBase<OtherDerived>& other) : m_diagonal(other) {}
/** Copy operator. */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC DiagonalMatrix& operator=(const DiagonalBase<OtherDerived>& other) {
m_diagonal = other.diagonal();
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_DEVICE_FUNC DiagonalMatrix& operator=(const DiagonalMatrix& other) {
m_diagonal = other.diagonal();
return *this;
}
#endif
typedef DiagonalWrapper<const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, DiagonalVectorType>>
InitializeReturnType;
/** Initializes a diagonal matrix of size SizeAtCompileTime with coefficients set to zero */
EIGEN_DEVICE_FUNC static const InitializeReturnType Zero() { return DiagonalVectorType::Zero().asDiagonal(); }
/** Initializes a diagonal matrix of size dim with coefficients set to zero */
EIGEN_DEVICE_FUNC static const InitializeReturnType Zero(Index size) {
return DiagonalVectorType::Zero(size).asDiagonal();
}
/** Initializes a identity matrix of size SizeAtCompileTime */
EIGEN_DEVICE_FUNC static const InitializeReturnType Identity() { return DiagonalVectorType::Ones().asDiagonal(); }
/** Initializes a identity matrix of size dim */
EIGEN_DEVICE_FUNC static const InitializeReturnType Identity(Index size) {
return DiagonalVectorType::Ones(size).asDiagonal();
}
/** Resizes to given size. */
EIGEN_DEVICE_FUNC inline void resize(Index size) { m_diagonal.resize(size); }
/** Sets all coefficients to zero. */
EIGEN_DEVICE_FUNC inline void setZero() { m_diagonal.setZero(); }
/** Resizes and sets all coefficients to zero. */
EIGEN_DEVICE_FUNC inline void setZero(Index size) { m_diagonal.setZero(size); }
/** Sets this matrix to be the identity matrix of the current size. */
EIGEN_DEVICE_FUNC inline void setIdentity() { m_diagonal.setOnes(); }
/** Sets this matrix to be the identity matrix of the given size. */
EIGEN_DEVICE_FUNC inline void setIdentity(Index size) { m_diagonal.setOnes(size); }
};
/** \class DiagonalWrapper
* \ingroup Core_Module
*
* \brief Expression of a diagonal matrix
*
* \tparam DiagonalVectorType_ the type of the vector of diagonal coefficients
*
* This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients,
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal()
* and most of the time this is the only way that it is used.
*
* \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal()
*/
namespace internal {
template <typename DiagonalVectorType_>
struct traits<DiagonalWrapper<DiagonalVectorType_>> {
typedef DiagonalVectorType_ DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::StorageIndex StorageIndex;
typedef DiagonalShape StorageKind;
typedef typename traits<DiagonalVectorType>::XprKind XprKind;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
Flags = (traits<DiagonalVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit
};
};
} // namespace internal
template <typename DiagonalVectorType_>
class DiagonalWrapper : public DiagonalBase<DiagonalWrapper<DiagonalVectorType_>>, internal::no_assignment_operator {
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef DiagonalVectorType_ DiagonalVectorType;
typedef DiagonalWrapper Nested;
#endif
/** Constructor from expression of diagonal coefficients to wrap. */
EIGEN_DEVICE_FUNC explicit inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {}
/** \returns a const reference to the wrapped expression of diagonal coefficients. */
EIGEN_DEVICE_FUNC const DiagonalVectorType& diagonal() const { return m_diagonal; }
protected:
typename DiagonalVectorType::Nested m_diagonal;
};
/** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients
*
* \only_for_vectors
*
* Example: \include MatrixBase_asDiagonal.cpp
* Output: \verbinclude MatrixBase_asDiagonal.out
*
* \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()
**/
template <typename Derived>
EIGEN_DEVICE_FUNC inline const DiagonalWrapper<const Derived> MatrixBase<Derived>::asDiagonal() const {
return DiagonalWrapper<const Derived>(derived());
}
/** \returns true if *this is approximately equal to a diagonal matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isDiagonal.cpp
* Output: \verbinclude MatrixBase_isDiagonal.out
*
* \sa asDiagonal()
*/
template <typename Derived>
bool MatrixBase<Derived>::isDiagonal(const RealScalar& prec) const {
if (cols() != rows()) return false;
RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
for (Index j = 0; j < cols(); ++j) {
RealScalar absOnDiagonal = numext::abs(coeff(j, j));
if (absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
}
for (Index j = 0; j < cols(); ++j)
for (Index i = 0; i < j; ++i) {
if (!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
if (!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
}
return true;
}
namespace internal {
template <>
struct storage_kind_to_shape<DiagonalShape> {
typedef DiagonalShape Shape;
};
struct Diagonal2Dense {};
template <>
struct AssignmentKind<DenseShape, DiagonalShape> {
typedef Diagonal2Dense Kind;
};
// Diagonal matrix to Dense assignment
template <typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Dense> {
static void run(DstXprType& dst, const SrcXprType& src,
const internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
dst.setZero();
dst.diagonal() = src.diagonal();
}
static void run(DstXprType& dst, const SrcXprType& src,
const internal::add_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) {
dst.diagonal() += src.diagonal();
}
static void run(DstXprType& dst, const SrcXprType& src,
const internal::sub_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) {
dst.diagonal() -= src.diagonal();
}
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_DIAGONALMATRIX_H