| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_REF_H |
| #define EIGEN_REF_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename PlainObjectType_, int Options_, typename StrideType_> |
| struct traits<Ref<PlainObjectType_, Options_, StrideType_> > |
| : public traits<Map<PlainObjectType_, Options_, StrideType_> > { |
| typedef PlainObjectType_ PlainObjectType; |
| typedef StrideType_ StrideType; |
| enum { |
| Options = Options_, |
| Flags = traits<Map<PlainObjectType_, Options_, StrideType_> >::Flags | NestByRefBit, |
| Alignment = traits<Map<PlainObjectType_, Options_, StrideType_> >::Alignment, |
| InnerStrideAtCompileTime = traits<Map<PlainObjectType_, Options_, StrideType_> >::InnerStrideAtCompileTime, |
| OuterStrideAtCompileTime = traits<Map<PlainObjectType_, Options_, StrideType_> >::OuterStrideAtCompileTime |
| }; |
| |
| template <typename Derived> |
| struct match { |
| enum { |
| IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime, |
| HasDirectAccess = internal::has_direct_access<Derived>::ret, |
| StorageOrderMatch = |
| IsVectorAtCompileTime || ((PlainObjectType::Flags & RowMajorBit) == (Derived::Flags & RowMajorBit)), |
| InnerStrideMatch = int(InnerStrideAtCompileTime) == int(Dynamic) || |
| int(InnerStrideAtCompileTime) == int(Derived::InnerStrideAtCompileTime) || |
| (int(InnerStrideAtCompileTime) == 0 && int(Derived::InnerStrideAtCompileTime) == 1), |
| OuterStrideMatch = IsVectorAtCompileTime || int(OuterStrideAtCompileTime) == int(Dynamic) || |
| int(OuterStrideAtCompileTime) == int(Derived::OuterStrideAtCompileTime), |
| // NOTE, this indirection of evaluator<Derived>::Alignment is needed |
| // to workaround a very strange bug in MSVC related to the instantiation |
| // of has_*ary_operator in evaluator<CwiseNullaryOp>. |
| // This line is surprisingly very sensitive. For instance, simply adding parenthesis |
| // as "DerivedAlignment = (int(evaluator<Derived>::Alignment))," will make MSVC fail... |
| DerivedAlignment = int(evaluator<Derived>::Alignment), |
| AlignmentMatch = (int(traits<PlainObjectType>::Alignment) == int(Unaligned)) || |
| (DerivedAlignment >= int(Alignment)), // FIXME the first condition is not very clear, it should |
| // be replaced by the required alignment |
| ScalarTypeMatch = internal::is_same<typename PlainObjectType::Scalar, typename Derived::Scalar>::value, |
| MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && |
| AlignmentMatch && ScalarTypeMatch |
| }; |
| typedef std::conditional_t<MatchAtCompileTime, internal::true_type, internal::false_type> type; |
| }; |
| }; |
| |
| template <typename Derived> |
| struct traits<RefBase<Derived> > : public traits<Derived> {}; |
| |
| } // namespace internal |
| |
| template <typename Derived> |
| class RefBase : public MapBase<Derived> { |
| typedef typename internal::traits<Derived>::PlainObjectType PlainObjectType; |
| typedef typename internal::traits<Derived>::StrideType StrideType; |
| |
| public: |
| typedef MapBase<Derived> Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(RefBase) |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index innerStride() const { |
| return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index outerStride() const { |
| return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() |
| : IsVectorAtCompileTime ? this->size() |
| : int(Flags) & RowMajorBit ? this->cols() |
| : this->rows(); |
| } |
| |
| EIGEN_DEVICE_FUNC RefBase() |
| : Base(0, RowsAtCompileTime == Dynamic ? 0 : RowsAtCompileTime, |
| ColsAtCompileTime == Dynamic ? 0 : ColsAtCompileTime), |
| // Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values: |
| m_stride(StrideType::OuterStrideAtCompileTime == Dynamic ? 0 : StrideType::OuterStrideAtCompileTime, |
| StrideType::InnerStrideAtCompileTime == Dynamic ? 0 : StrideType::InnerStrideAtCompileTime) {} |
| |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(RefBase) |
| |
| protected: |
| typedef Stride<StrideType::OuterStrideAtCompileTime, StrideType::InnerStrideAtCompileTime> StrideBase; |
| |
| // Resolves inner stride if default 0. |
| static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index resolveInnerStride(Index inner) { return inner == 0 ? 1 : inner; } |
| |
| // Resolves outer stride if default 0. |
| static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index resolveOuterStride(Index inner, Index outer, Index rows, Index cols, |
| bool isVectorAtCompileTime, bool isRowMajor) { |
| return outer == 0 ? isVectorAtCompileTime ? inner * rows * cols : isRowMajor ? inner * cols : inner * rows : outer; |
| } |
| |
| // Returns true if construction is valid, false if there is a stride mismatch, |
| // and fails if there is a size mismatch. |
| template <typename Expression> |
| EIGEN_DEVICE_FUNC bool construct(Expression& expr) { |
| // Check matrix sizes. If this is a compile-time vector, we do allow |
| // implicitly transposing. |
| EIGEN_STATIC_ASSERT(EIGEN_PREDICATE_SAME_MATRIX_SIZE(PlainObjectType, Expression) |
| // If it is a vector, the transpose sizes might match. |
| || (PlainObjectType::IsVectorAtCompileTime && |
| ((int(PlainObjectType::RowsAtCompileTime) == Eigen::Dynamic || |
| int(Expression::ColsAtCompileTime) == Eigen::Dynamic || |
| int(PlainObjectType::RowsAtCompileTime) == int(Expression::ColsAtCompileTime)) && |
| (int(PlainObjectType::ColsAtCompileTime) == Eigen::Dynamic || |
| int(Expression::RowsAtCompileTime) == Eigen::Dynamic || |
| int(PlainObjectType::ColsAtCompileTime) == int(Expression::RowsAtCompileTime)))), |
| YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES) |
| |
| // Determine runtime rows and columns. |
| Index rows = expr.rows(); |
| Index cols = expr.cols(); |
| if (PlainObjectType::RowsAtCompileTime == 1) { |
| eigen_assert(expr.rows() == 1 || expr.cols() == 1); |
| rows = 1; |
| cols = expr.size(); |
| } else if (PlainObjectType::ColsAtCompileTime == 1) { |
| eigen_assert(expr.rows() == 1 || expr.cols() == 1); |
| rows = expr.size(); |
| cols = 1; |
| } |
| // Verify that the sizes are valid. |
| eigen_assert((PlainObjectType::RowsAtCompileTime == Dynamic) || (PlainObjectType::RowsAtCompileTime == rows)); |
| eigen_assert((PlainObjectType::ColsAtCompileTime == Dynamic) || (PlainObjectType::ColsAtCompileTime == cols)); |
| |
| // If this is a vector, we might be transposing, which means that stride should swap. |
| const bool transpose = PlainObjectType::IsVectorAtCompileTime && (rows != expr.rows()); |
| // If the storage format differs, we also need to swap the stride. |
| const bool row_major = ((PlainObjectType::Flags)&RowMajorBit) != 0; |
| const bool expr_row_major = (Expression::Flags & RowMajorBit) != 0; |
| const bool storage_differs = (row_major != expr_row_major); |
| |
| const bool swap_stride = (transpose != storage_differs); |
| |
| // Determine expr's actual strides, resolving any defaults if zero. |
| const Index expr_inner_actual = resolveInnerStride(expr.innerStride()); |
| const Index expr_outer_actual = resolveOuterStride(expr_inner_actual, expr.outerStride(), expr.rows(), expr.cols(), |
| Expression::IsVectorAtCompileTime != 0, expr_row_major); |
| |
| // If this is a column-major row vector or row-major column vector, the inner-stride |
| // is arbitrary, so set it to either the compile-time inner stride or 1. |
| const bool row_vector = (rows == 1); |
| const bool col_vector = (cols == 1); |
| const Index inner_stride = |
| ((!row_major && row_vector) || (row_major && col_vector)) |
| ? (StrideType::InnerStrideAtCompileTime > 0 ? Index(StrideType::InnerStrideAtCompileTime) : 1) |
| : swap_stride ? expr_outer_actual |
| : expr_inner_actual; |
| |
| // If this is a column-major column vector or row-major row vector, the outer-stride |
| // is arbitrary, so set it to either the compile-time outer stride or vector size. |
| const Index outer_stride = |
| ((!row_major && col_vector) || (row_major && row_vector)) |
| ? (StrideType::OuterStrideAtCompileTime > 0 ? Index(StrideType::OuterStrideAtCompileTime) |
| : rows * cols * inner_stride) |
| : swap_stride ? expr_inner_actual |
| : expr_outer_actual; |
| |
| // Check if given inner/outer strides are compatible with compile-time strides. |
| const bool inner_valid = (StrideType::InnerStrideAtCompileTime == Dynamic) || |
| (resolveInnerStride(Index(StrideType::InnerStrideAtCompileTime)) == inner_stride); |
| if (!inner_valid) { |
| return false; |
| } |
| |
| const bool outer_valid = |
| (StrideType::OuterStrideAtCompileTime == Dynamic) || |
| (resolveOuterStride(inner_stride, Index(StrideType::OuterStrideAtCompileTime), rows, cols, |
| PlainObjectType::IsVectorAtCompileTime != 0, row_major) == outer_stride); |
| if (!outer_valid) { |
| return false; |
| } |
| |
| internal::construct_at<Base>(this, expr.data(), rows, cols); |
| internal::construct_at(&m_stride, (StrideType::OuterStrideAtCompileTime == 0) ? 0 : outer_stride, |
| (StrideType::InnerStrideAtCompileTime == 0) ? 0 : inner_stride); |
| return true; |
| } |
| |
| StrideBase m_stride; |
| }; |
| |
| /** \class Ref |
| * \ingroup Core_Module |
| * |
| * \brief A matrix or vector expression mapping an existing expression |
| * |
| * \tparam PlainObjectType the equivalent matrix type of the mapped data |
| * \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, |
| * \c #Aligned16, \c #Aligned8 or \c #Unaligned. The default is \c #Unaligned. \tparam StrideType optionally specifies |
| * strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), but accepts a |
| * variable outer stride (leading dimension). This can be overridden by specifying strides. The type passed here must be |
| * a specialization of the Stride template, see examples below. |
| * |
| * This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the |
| * number of copies. A Ref<> object can represent either a const expression or a l-value: \code |
| * // in-out argument: |
| * void foo1(Ref<VectorXf> x); |
| * |
| * // read-only const argument: |
| * void foo2(const Ref<const VectorXf>& x); |
| * \endcode |
| * |
| * In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation |
| * issue will be triggered. By default, a Ref<VectorXf> can reference any dense vector expression of float having a |
| * contiguous memory layout. Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float |
| * whose column's elements are contiguously stored with the possibility to have a constant space in-between each column, |
| * i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension) can be greater than the number |
| * of rows. |
| * |
| * In the const case, if the input expression does not match the above requirement, then it is evaluated into a |
| * temporary before being passed to the function. Here are some examples: \code MatrixXf A; VectorXf a; foo1(a.head()); |
| * // OK foo1(A.col()); // OK foo1(A.row()); // Compilation error because here innerstride!=1 |
| * foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object |
| * foo2(A.row().transpose()); // The row is copied into a contiguous temporary |
| * foo2(2*a); // The expression is evaluated into a temporary |
| * foo2(A.col().segment(2,4)); // No temporary |
| * \endcode |
| * |
| * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters. |
| * Here is an example accepting an innerstride!=1: |
| * \code |
| * // in-out argument: |
| * void foo3(Ref<VectorXf,0,InnerStride<> > x); |
| * foo3(A.row()); // OK |
| * \endcode |
| * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to |
| * exploit vectorization, and will involve more expensive address computations even if the input is contiguously stored |
| * in memory. To overcome this issue, one might propose to overload internally calling a template function, e.g.: \code |
| * // in the .h: |
| * void foo(const Ref<MatrixXf>& A); |
| * void foo(const Ref<MatrixXf,0,Stride<> >& A); |
| * |
| * // in the .cpp: |
| * template<typename TypeOfA> void foo_impl(const TypeOfA& A) { |
| * ... // crazy code goes here |
| * } |
| * void foo(const Ref<MatrixXf>& A) { foo_impl(A); } |
| * void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); } |
| * \endcode |
| * |
| * See also the following stackoverflow questions for further references: |
| * - <a href="http://stackoverflow.com/questions/21132538/correct-usage-of-the-eigenref-class">Correct usage of the |
| * Eigen::Ref<> class</a> |
| * |
| * \sa PlainObjectBase::Map(), \ref TopicStorageOrders |
| */ |
| template <typename PlainObjectType, int Options, typename StrideType> |
| class Ref : public RefBase<Ref<PlainObjectType, Options, StrideType> > { |
| private: |
| typedef internal::traits<Ref> Traits; |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Ref( |
| const PlainObjectBase<Derived>& expr, |
| std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0); |
| |
| public: |
| typedef RefBase<Ref> Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(Ref) |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Ref( |
| PlainObjectBase<Derived>& expr, |
| std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0) { |
| EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); |
| // Construction must pass since we will not create temporary storage in the non-const case. |
| const bool success = Base::construct(expr.derived()); |
| EIGEN_UNUSED_VARIABLE(success) |
| eigen_assert(success); |
| } |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Ref( |
| const DenseBase<Derived>& expr, |
| std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0) |
| #else |
| /** Implicit constructor from any dense expression */ |
| template <typename Derived> |
| inline Ref(DenseBase<Derived>& expr) |
| #endif |
| { |
| EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); |
| EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); |
| EIGEN_STATIC_ASSERT(!Derived::IsPlainObjectBase, THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); |
| // Construction must pass since we will not create temporary storage in the non-const case. |
| const bool success = Base::construct(expr.const_cast_derived()); |
| EIGEN_UNUSED_VARIABLE(success) |
| eigen_assert(success); |
| } |
| |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref) |
| }; |
| |
| // this is the const ref version |
| template <typename TPlainObjectType, int Options, typename StrideType> |
| class Ref<const TPlainObjectType, Options, StrideType> |
| : public RefBase<Ref<const TPlainObjectType, Options, StrideType> > { |
| typedef internal::traits<Ref> Traits; |
| |
| static constexpr bool may_map_m_object_successfully = |
| (static_cast<int>(StrideType::InnerStrideAtCompileTime) == 0 || |
| static_cast<int>(StrideType::InnerStrideAtCompileTime) == 1 || |
| static_cast<int>(StrideType::InnerStrideAtCompileTime) == Dynamic) && |
| (TPlainObjectType::IsVectorAtCompileTime || static_cast<int>(StrideType::OuterStrideAtCompileTime) == 0 || |
| static_cast<int>(StrideType::OuterStrideAtCompileTime) == Dynamic || |
| static_cast<int>(StrideType::OuterStrideAtCompileTime) == |
| static_cast<int>(TPlainObjectType::InnerSizeAtCompileTime) || |
| static_cast<int>(TPlainObjectType::InnerSizeAtCompileTime) == Dynamic); |
| |
| public: |
| typedef RefBase<Ref> Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(Ref) |
| |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr, |
| std::enable_if_t<bool(Traits::template match<Derived>::ScalarTypeMatch), Derived>* = 0) { |
| // std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," |
| // << match_helper<Derived>::InnerStrideMatch << "\n"; std::cout << int(StrideType::OuterStrideAtCompileTime) |
| // << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; std::cout << |
| // int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n"; |
| EIGEN_STATIC_ASSERT(Traits::template match<Derived>::type::value || may_map_m_object_successfully, |
| STORAGE_LAYOUT_DOES_NOT_MATCH); |
| construct(expr.derived(), typename Traits::template match<Derived>::type()); |
| } |
| |
| EIGEN_DEVICE_FUNC inline Ref(const Ref& other) : Base(other) { |
| // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy |
| } |
| |
| EIGEN_DEVICE_FUNC inline Ref(Ref&& other) { |
| if (other.data() == other.m_object.data()) { |
| m_object = std::move(other.m_object); |
| Base::construct(m_object); |
| } else |
| Base::construct(other); |
| } |
| |
| template <typename OtherRef> |
| EIGEN_DEVICE_FUNC inline Ref(const RefBase<OtherRef>& other) { |
| EIGEN_STATIC_ASSERT(Traits::template match<OtherRef>::type::value || may_map_m_object_successfully, |
| STORAGE_LAYOUT_DOES_NOT_MATCH); |
| construct(other.derived(), typename Traits::template match<OtherRef>::type()); |
| } |
| |
| protected: |
| template <typename Expression> |
| EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::true_type) { |
| // Check if we can use the underlying expr's storage directly, otherwise call the copy version. |
| if (!Base::construct(expr)) { |
| construct(expr, internal::false_type()); |
| } |
| } |
| |
| template <typename Expression> |
| EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::false_type) { |
| internal::call_assignment_no_alias(m_object, expr, internal::assign_op<Scalar, Scalar>()); |
| const bool success = Base::construct(m_object); |
| EIGEN_ONLY_USED_FOR_DEBUG(success) |
| eigen_assert(success); |
| } |
| |
| protected: |
| TPlainObjectType m_object; |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_REF_H |