blob: 129bc85f46fd59cfe2398c48b933dc46914e80e0 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REF_H
#define EIGEN_REF_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename PlainObjectType_, int Options_, typename StrideType_>
struct traits<Ref<PlainObjectType_, Options_, StrideType_> >
: public traits<Map<PlainObjectType_, Options_, StrideType_> > {
typedef PlainObjectType_ PlainObjectType;
typedef StrideType_ StrideType;
enum {
Options = Options_,
Flags = traits<Map<PlainObjectType_, Options_, StrideType_> >::Flags | NestByRefBit,
Alignment = traits<Map<PlainObjectType_, Options_, StrideType_> >::Alignment,
InnerStrideAtCompileTime = traits<Map<PlainObjectType_, Options_, StrideType_> >::InnerStrideAtCompileTime,
OuterStrideAtCompileTime = traits<Map<PlainObjectType_, Options_, StrideType_> >::OuterStrideAtCompileTime
};
template <typename Derived>
struct match {
enum {
IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime,
HasDirectAccess = internal::has_direct_access<Derived>::ret,
StorageOrderMatch =
IsVectorAtCompileTime || ((PlainObjectType::Flags & RowMajorBit) == (Derived::Flags & RowMajorBit)),
InnerStrideMatch = int(InnerStrideAtCompileTime) == int(Dynamic) ||
int(InnerStrideAtCompileTime) == int(Derived::InnerStrideAtCompileTime) ||
(int(InnerStrideAtCompileTime) == 0 && int(Derived::InnerStrideAtCompileTime) == 1),
OuterStrideMatch = IsVectorAtCompileTime || int(OuterStrideAtCompileTime) == int(Dynamic) ||
int(OuterStrideAtCompileTime) == int(Derived::OuterStrideAtCompileTime),
// NOTE, this indirection of evaluator<Derived>::Alignment is needed
// to workaround a very strange bug in MSVC related to the instantiation
// of has_*ary_operator in evaluator<CwiseNullaryOp>.
// This line is surprisingly very sensitive. For instance, simply adding parenthesis
// as "DerivedAlignment = (int(evaluator<Derived>::Alignment))," will make MSVC fail...
DerivedAlignment = int(evaluator<Derived>::Alignment),
AlignmentMatch = (int(traits<PlainObjectType>::Alignment) == int(Unaligned)) ||
(DerivedAlignment >= int(Alignment)), // FIXME the first condition is not very clear, it should
// be replaced by the required alignment
ScalarTypeMatch = internal::is_same<typename PlainObjectType::Scalar, typename Derived::Scalar>::value,
MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch &&
AlignmentMatch && ScalarTypeMatch
};
typedef std::conditional_t<MatchAtCompileTime, internal::true_type, internal::false_type> type;
};
};
template <typename Derived>
struct traits<RefBase<Derived> > : public traits<Derived> {};
} // namespace internal
template <typename Derived>
class RefBase : public MapBase<Derived> {
typedef typename internal::traits<Derived>::PlainObjectType PlainObjectType;
typedef typename internal::traits<Derived>::StrideType StrideType;
public:
typedef MapBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(RefBase)
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index innerStride() const {
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index outerStride() const {
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
: IsVectorAtCompileTime ? this->size()
: int(Flags) & RowMajorBit ? this->cols()
: this->rows();
}
EIGEN_DEVICE_FUNC RefBase()
: Base(0, RowsAtCompileTime == Dynamic ? 0 : RowsAtCompileTime,
ColsAtCompileTime == Dynamic ? 0 : ColsAtCompileTime),
// Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values:
m_stride(StrideType::OuterStrideAtCompileTime == Dynamic ? 0 : StrideType::OuterStrideAtCompileTime,
StrideType::InnerStrideAtCompileTime == Dynamic ? 0 : StrideType::InnerStrideAtCompileTime) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(RefBase)
protected:
typedef Stride<StrideType::OuterStrideAtCompileTime, StrideType::InnerStrideAtCompileTime> StrideBase;
// Resolves inner stride if default 0.
static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index resolveInnerStride(Index inner) { return inner == 0 ? 1 : inner; }
// Resolves outer stride if default 0.
static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index resolveOuterStride(Index inner, Index outer, Index rows, Index cols,
bool isVectorAtCompileTime, bool isRowMajor) {
return outer == 0 ? isVectorAtCompileTime ? inner * rows * cols : isRowMajor ? inner * cols : inner * rows : outer;
}
// Returns true if construction is valid, false if there is a stride mismatch,
// and fails if there is a size mismatch.
template <typename Expression>
EIGEN_DEVICE_FUNC bool construct(Expression& expr) {
// Check matrix sizes. If this is a compile-time vector, we do allow
// implicitly transposing.
EIGEN_STATIC_ASSERT(EIGEN_PREDICATE_SAME_MATRIX_SIZE(PlainObjectType, Expression)
// If it is a vector, the transpose sizes might match.
|| (PlainObjectType::IsVectorAtCompileTime &&
((int(PlainObjectType::RowsAtCompileTime) == Eigen::Dynamic ||
int(Expression::ColsAtCompileTime) == Eigen::Dynamic ||
int(PlainObjectType::RowsAtCompileTime) == int(Expression::ColsAtCompileTime)) &&
(int(PlainObjectType::ColsAtCompileTime) == Eigen::Dynamic ||
int(Expression::RowsAtCompileTime) == Eigen::Dynamic ||
int(PlainObjectType::ColsAtCompileTime) == int(Expression::RowsAtCompileTime)))),
YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES)
// Determine runtime rows and columns.
Index rows = expr.rows();
Index cols = expr.cols();
if (PlainObjectType::RowsAtCompileTime == 1) {
eigen_assert(expr.rows() == 1 || expr.cols() == 1);
rows = 1;
cols = expr.size();
} else if (PlainObjectType::ColsAtCompileTime == 1) {
eigen_assert(expr.rows() == 1 || expr.cols() == 1);
rows = expr.size();
cols = 1;
}
// Verify that the sizes are valid.
eigen_assert((PlainObjectType::RowsAtCompileTime == Dynamic) || (PlainObjectType::RowsAtCompileTime == rows));
eigen_assert((PlainObjectType::ColsAtCompileTime == Dynamic) || (PlainObjectType::ColsAtCompileTime == cols));
// If this is a vector, we might be transposing, which means that stride should swap.
const bool transpose = PlainObjectType::IsVectorAtCompileTime && (rows != expr.rows());
// If the storage format differs, we also need to swap the stride.
const bool row_major = ((PlainObjectType::Flags)&RowMajorBit) != 0;
const bool expr_row_major = (Expression::Flags & RowMajorBit) != 0;
const bool storage_differs = (row_major != expr_row_major);
const bool swap_stride = (transpose != storage_differs);
// Determine expr's actual strides, resolving any defaults if zero.
const Index expr_inner_actual = resolveInnerStride(expr.innerStride());
const Index expr_outer_actual = resolveOuterStride(expr_inner_actual, expr.outerStride(), expr.rows(), expr.cols(),
Expression::IsVectorAtCompileTime != 0, expr_row_major);
// If this is a column-major row vector or row-major column vector, the inner-stride
// is arbitrary, so set it to either the compile-time inner stride or 1.
const bool row_vector = (rows == 1);
const bool col_vector = (cols == 1);
const Index inner_stride =
((!row_major && row_vector) || (row_major && col_vector))
? (StrideType::InnerStrideAtCompileTime > 0 ? Index(StrideType::InnerStrideAtCompileTime) : 1)
: swap_stride ? expr_outer_actual
: expr_inner_actual;
// If this is a column-major column vector or row-major row vector, the outer-stride
// is arbitrary, so set it to either the compile-time outer stride or vector size.
const Index outer_stride =
((!row_major && col_vector) || (row_major && row_vector))
? (StrideType::OuterStrideAtCompileTime > 0 ? Index(StrideType::OuterStrideAtCompileTime)
: rows * cols * inner_stride)
: swap_stride ? expr_inner_actual
: expr_outer_actual;
// Check if given inner/outer strides are compatible with compile-time strides.
const bool inner_valid = (StrideType::InnerStrideAtCompileTime == Dynamic) ||
(resolveInnerStride(Index(StrideType::InnerStrideAtCompileTime)) == inner_stride);
if (!inner_valid) {
return false;
}
const bool outer_valid =
(StrideType::OuterStrideAtCompileTime == Dynamic) ||
(resolveOuterStride(inner_stride, Index(StrideType::OuterStrideAtCompileTime), rows, cols,
PlainObjectType::IsVectorAtCompileTime != 0, row_major) == outer_stride);
if (!outer_valid) {
return false;
}
internal::construct_at<Base>(this, expr.data(), rows, cols);
internal::construct_at(&m_stride, (StrideType::OuterStrideAtCompileTime == 0) ? 0 : outer_stride,
(StrideType::InnerStrideAtCompileTime == 0) ? 0 : inner_stride);
return true;
}
StrideBase m_stride;
};
/** \class Ref
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing expression
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32,
* \c #Aligned16, \c #Aligned8 or \c #Unaligned. The default is \c #Unaligned. \tparam StrideType optionally specifies
* strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), but accepts a
* variable outer stride (leading dimension). This can be overridden by specifying strides. The type passed here must be
* a specialization of the Stride template, see examples below.
*
* This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the
* number of copies. A Ref<> object can represent either a const expression or a l-value: \code
* // in-out argument:
* void foo1(Ref<VectorXf> x);
*
* // read-only const argument:
* void foo2(const Ref<const VectorXf>& x);
* \endcode
*
* In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation
* issue will be triggered. By default, a Ref<VectorXf> can reference any dense vector expression of float having a
* contiguous memory layout. Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float
* whose column's elements are contiguously stored with the possibility to have a constant space in-between each column,
* i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension) can be greater than the number
* of rows.
*
* In the const case, if the input expression does not match the above requirement, then it is evaluated into a
* temporary before being passed to the function. Here are some examples: \code MatrixXf A; VectorXf a; foo1(a.head());
* // OK foo1(A.col()); // OK foo1(A.row()); // Compilation error because here innerstride!=1
* foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object
* foo2(A.row().transpose()); // The row is copied into a contiguous temporary
* foo2(2*a); // The expression is evaluated into a temporary
* foo2(A.col().segment(2,4)); // No temporary
* \endcode
*
* The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters.
* Here is an example accepting an innerstride!=1:
* \code
* // in-out argument:
* void foo3(Ref<VectorXf,0,InnerStride<> > x);
* foo3(A.row()); // OK
* \endcode
* The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to
* exploit vectorization, and will involve more expensive address computations even if the input is contiguously stored
* in memory. To overcome this issue, one might propose to overload internally calling a template function, e.g.: \code
* // in the .h:
* void foo(const Ref<MatrixXf>& A);
* void foo(const Ref<MatrixXf,0,Stride<> >& A);
*
* // in the .cpp:
* template<typename TypeOfA> void foo_impl(const TypeOfA& A) {
* ... // crazy code goes here
* }
* void foo(const Ref<MatrixXf>& A) { foo_impl(A); }
* void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); }
* \endcode
*
* See also the following stackoverflow questions for further references:
* - <a href="http://stackoverflow.com/questions/21132538/correct-usage-of-the-eigenref-class">Correct usage of the
* Eigen::Ref<> class</a>
*
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
*/
template <typename PlainObjectType, int Options, typename StrideType>
class Ref : public RefBase<Ref<PlainObjectType, Options, StrideType> > {
private:
typedef internal::traits<Ref> Traits;
template <typename Derived>
EIGEN_DEVICE_FUNC inline Ref(
const PlainObjectBase<Derived>& expr,
std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0);
public:
typedef RefBase<Ref> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
#ifndef EIGEN_PARSED_BY_DOXYGEN
template <typename Derived>
EIGEN_DEVICE_FUNC inline Ref(
PlainObjectBase<Derived>& expr,
std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0) {
EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
// Construction must pass since we will not create temporary storage in the non-const case.
const bool success = Base::construct(expr.derived());
EIGEN_UNUSED_VARIABLE(success)
eigen_assert(success);
}
template <typename Derived>
EIGEN_DEVICE_FUNC inline Ref(
const DenseBase<Derived>& expr,
std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0)
#else
/** Implicit constructor from any dense expression */
template <typename Derived>
inline Ref(DenseBase<Derived>& expr)
#endif
{
EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
EIGEN_STATIC_ASSERT(!Derived::IsPlainObjectBase, THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
// Construction must pass since we will not create temporary storage in the non-const case.
const bool success = Base::construct(expr.const_cast_derived());
EIGEN_UNUSED_VARIABLE(success)
eigen_assert(success);
}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref)
};
// this is the const ref version
template <typename TPlainObjectType, int Options, typename StrideType>
class Ref<const TPlainObjectType, Options, StrideType>
: public RefBase<Ref<const TPlainObjectType, Options, StrideType> > {
typedef internal::traits<Ref> Traits;
static constexpr bool may_map_m_object_successfully =
(static_cast<int>(StrideType::InnerStrideAtCompileTime) == 0 ||
static_cast<int>(StrideType::InnerStrideAtCompileTime) == 1 ||
static_cast<int>(StrideType::InnerStrideAtCompileTime) == Dynamic) &&
(TPlainObjectType::IsVectorAtCompileTime || static_cast<int>(StrideType::OuterStrideAtCompileTime) == 0 ||
static_cast<int>(StrideType::OuterStrideAtCompileTime) == Dynamic ||
static_cast<int>(StrideType::OuterStrideAtCompileTime) ==
static_cast<int>(TPlainObjectType::InnerSizeAtCompileTime) ||
static_cast<int>(TPlainObjectType::InnerSizeAtCompileTime) == Dynamic);
public:
typedef RefBase<Ref> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
template <typename Derived>
EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr,
std::enable_if_t<bool(Traits::template match<Derived>::ScalarTypeMatch), Derived>* = 0) {
// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << ","
// << match_helper<Derived>::InnerStrideMatch << "\n"; std::cout << int(StrideType::OuterStrideAtCompileTime)
// << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; std::cout <<
// int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n";
EIGEN_STATIC_ASSERT(Traits::template match<Derived>::type::value || may_map_m_object_successfully,
STORAGE_LAYOUT_DOES_NOT_MATCH);
construct(expr.derived(), typename Traits::template match<Derived>::type());
}
EIGEN_DEVICE_FUNC inline Ref(const Ref& other) : Base(other) {
// copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy
}
EIGEN_DEVICE_FUNC inline Ref(Ref&& other) {
if (other.data() == other.m_object.data()) {
m_object = std::move(other.m_object);
Base::construct(m_object);
} else
Base::construct(other);
}
template <typename OtherRef>
EIGEN_DEVICE_FUNC inline Ref(const RefBase<OtherRef>& other) {
EIGEN_STATIC_ASSERT(Traits::template match<OtherRef>::type::value || may_map_m_object_successfully,
STORAGE_LAYOUT_DOES_NOT_MATCH);
construct(other.derived(), typename Traits::template match<OtherRef>::type());
}
protected:
template <typename Expression>
EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::true_type) {
// Check if we can use the underlying expr's storage directly, otherwise call the copy version.
if (!Base::construct(expr)) {
construct(expr, internal::false_type());
}
}
template <typename Expression>
EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::false_type) {
internal::call_assignment_no_alias(m_object, expr, internal::assign_op<Scalar, Scalar>());
const bool success = Base::construct(m_object);
EIGEN_ONLY_USED_FOR_DEBUG(success)
eigen_assert(success);
}
protected:
TPlainObjectType m_object;
};
} // end namespace Eigen
#endif // EIGEN_REF_H