blob: 2b1683be95071fe1216324f761f0700b874aa56f [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRIANGULARMATRIX_H
#define EIGEN_TRIANGULARMATRIX_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <int Side, typename TriangularType, typename Rhs>
struct triangular_solve_retval;
}
/** \class TriangularBase
* \ingroup Core_Module
*
* \brief Base class for triangular part in a matrix
*/
template <typename Derived>
class TriangularBase : public EigenBase<Derived> {
public:
enum {
Mode = internal::traits<Derived>::Mode,
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
SizeAtCompileTime = (internal::size_of_xpr_at_compile_time<Derived>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxSizeAtCompileTime = internal::size_at_compile_time(internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime)
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
typedef typename internal::traits<Derived>::FullMatrixType DenseMatrixType;
typedef DenseMatrixType DenseType;
typedef Derived const& Nested;
EIGEN_DEVICE_FUNC inline TriangularBase() {
eigen_assert(!((int(Mode) & int(UnitDiag)) && (int(Mode) & int(ZeroDiag))));
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return derived().rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return derived().cols(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index outerStride() const EIGEN_NOEXCEPT { return derived().outerStride(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index innerStride() const EIGEN_NOEXCEPT { return derived().innerStride(); }
// dummy resize function
EIGEN_DEVICE_FUNC void resize(Index rows, Index cols) {
EIGEN_UNUSED_VARIABLE(rows);
EIGEN_UNUSED_VARIABLE(cols);
eigen_assert(rows == this->rows() && cols == this->cols());
}
EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const { return derived().coeff(row, col); }
EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row, col); }
/** \see MatrixBase::copyCoeff(row,col)
*/
template <typename Other>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other) {
derived().coeffRef(row, col) = other.coeff(row, col);
}
EIGEN_DEVICE_FUNC inline Scalar operator()(Index row, Index col) const {
check_coordinates(row, col);
return coeff(row, col);
}
EIGEN_DEVICE_FUNC inline Scalar& operator()(Index row, Index col) {
check_coordinates(row, col);
return coeffRef(row, col);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast<Derived*>(this); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
template <typename DenseDerived>
EIGEN_DEVICE_FUNC void evalTo(MatrixBase<DenseDerived>& other) const;
template <typename DenseDerived>
EIGEN_DEVICE_FUNC void evalToLazy(MatrixBase<DenseDerived>& other) const;
EIGEN_DEVICE_FUNC DenseMatrixType toDenseMatrix() const {
DenseMatrixType res(rows(), cols());
evalToLazy(res);
return res;
}
protected:
void check_coordinates(Index row, Index col) const {
EIGEN_ONLY_USED_FOR_DEBUG(row);
EIGEN_ONLY_USED_FOR_DEBUG(col);
eigen_assert(col >= 0 && col < cols() && row >= 0 && row < rows());
const int mode = int(Mode) & ~SelfAdjoint;
EIGEN_ONLY_USED_FOR_DEBUG(mode);
eigen_assert((mode == Upper && col >= row) || (mode == Lower && col <= row) ||
((mode == StrictlyUpper || mode == UnitUpper) && col > row) ||
((mode == StrictlyLower || mode == UnitLower) && col < row));
}
#ifdef EIGEN_INTERNAL_DEBUGGING
void check_coordinates_internal(Index row, Index col) const { check_coordinates(row, col); }
#else
void check_coordinates_internal(Index, Index) const {}
#endif
};
/** \class TriangularView
* \ingroup Core_Module
*
* \brief Expression of a triangular part in a matrix
*
* \tparam MatrixType the type of the object in which we are taking the triangular part
* \tparam Mode the kind of triangular matrix expression to construct. Can be #Upper,
* #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower.
* This is in fact a bit field; it must have either #Upper or #Lower,
* and additionally it may have #UnitDiag or #ZeroDiag or neither.
*
* This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular
* matrices one should speak of "trapezoid" parts. This class is the return type
* of MatrixBase::triangularView() and SparseMatrixBase::triangularView(), and most of the time this is the only way it
* is used.
*
* \sa MatrixBase::triangularView()
*/
namespace internal {
template <typename MatrixType, unsigned int Mode_>
struct traits<TriangularView<MatrixType, Mode_>> : traits<MatrixType> {
typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested;
typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNestedNonRef;
typedef remove_all_t<MatrixTypeNested> MatrixTypeNestedCleaned;
typedef typename MatrixType::PlainObject FullMatrixType;
typedef MatrixType ExpressionType;
enum {
Mode = Mode_,
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) &
(~(PacketAccessBit | DirectAccessBit | LinearAccessBit)))
};
};
} // namespace internal
template <typename MatrixType_, unsigned int Mode_, typename StorageKind>
class TriangularViewImpl;
template <typename MatrixType_, unsigned int Mode_>
class TriangularView
: public TriangularViewImpl<MatrixType_, Mode_, typename internal::traits<MatrixType_>::StorageKind> {
public:
typedef TriangularViewImpl<MatrixType_, Mode_, typename internal::traits<MatrixType_>::StorageKind> Base;
typedef typename internal::traits<TriangularView>::Scalar Scalar;
typedef MatrixType_ MatrixType;
protected:
typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
typedef internal::remove_all_t<typename MatrixType::ConjugateReturnType> MatrixConjugateReturnType;
typedef TriangularView<std::add_const_t<MatrixType>, Mode_> ConstTriangularView;
public:
typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned NestedExpression;
enum {
Mode = Mode_,
Flags = internal::traits<TriangularView>::Flags,
TransposeMode = (int(Mode) & int(Upper) ? Lower : 0) | (int(Mode) & int(Lower) ? Upper : 0) |
(int(Mode) & int(UnitDiag)) | (int(Mode) & int(ZeroDiag)),
IsVectorAtCompileTime = false
};
EIGEN_DEVICE_FUNC explicit inline TriangularView(MatrixType& matrix) : m_matrix(matrix) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TriangularView)
/** \copydoc EigenBase::rows() */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
/** \copydoc EigenBase::cols() */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
/** \returns a const reference to the nested expression */
EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; }
/** \returns a reference to the nested expression */
EIGEN_DEVICE_FUNC NestedExpression& nestedExpression() { return m_matrix; }
typedef TriangularView<const MatrixConjugateReturnType, Mode> ConjugateReturnType;
/** \sa MatrixBase::conjugate() const */
EIGEN_DEVICE_FUNC inline const ConjugateReturnType conjugate() const {
return ConjugateReturnType(m_matrix.conjugate());
}
/** \returns an expression of the complex conjugate of \c *this if Cond==true,
* returns \c *this otherwise.
*/
template <bool Cond>
EIGEN_DEVICE_FUNC inline std::conditional_t<Cond, ConjugateReturnType, ConstTriangularView> conjugateIf() const {
typedef std::conditional_t<Cond, ConjugateReturnType, ConstTriangularView> ReturnType;
return ReturnType(m_matrix.template conjugateIf<Cond>());
}
typedef TriangularView<const typename MatrixType::AdjointReturnType, TransposeMode> AdjointReturnType;
/** \sa MatrixBase::adjoint() const */
EIGEN_DEVICE_FUNC inline const AdjointReturnType adjoint() const { return AdjointReturnType(m_matrix.adjoint()); }
typedef TriangularView<typename MatrixType::TransposeReturnType, TransposeMode> TransposeReturnType;
/** \sa MatrixBase::transpose() */
template <class Dummy = int>
EIGEN_DEVICE_FUNC inline TransposeReturnType transpose(
std::enable_if_t<Eigen::internal::is_lvalue<MatrixType>::value, Dummy*> = nullptr) {
typename MatrixType::TransposeReturnType tmp(m_matrix);
return TransposeReturnType(tmp);
}
typedef TriangularView<const typename MatrixType::ConstTransposeReturnType, TransposeMode> ConstTransposeReturnType;
/** \sa MatrixBase::transpose() const */
EIGEN_DEVICE_FUNC inline const ConstTransposeReturnType transpose() const {
return ConstTransposeReturnType(m_matrix.transpose());
}
template <typename Other>
EIGEN_DEVICE_FUNC inline const Solve<TriangularView, Other> solve(const MatrixBase<Other>& other) const {
return Solve<TriangularView, Other>(*this, other.derived());
}
// workaround MSVC ICE
#if EIGEN_COMP_MSVC
template <int Side, typename Other>
EIGEN_DEVICE_FUNC inline const internal::triangular_solve_retval<Side, TriangularView, Other> solve(
const MatrixBase<Other>& other) const {
return Base::template solve<Side>(other);
}
#else
using Base::solve;
#endif
/** \returns a selfadjoint view of the referenced triangular part which must be either \c #Upper or \c #Lower.
*
* This is a shortcut for \code this->nestedExpression().selfadjointView<(*this)::Mode>() \endcode
* \sa MatrixBase::selfadjointView() */
EIGEN_DEVICE_FUNC SelfAdjointView<MatrixTypeNestedNonRef, Mode> selfadjointView() {
EIGEN_STATIC_ASSERT((Mode & (UnitDiag | ZeroDiag)) == 0, PROGRAMMING_ERROR);
return SelfAdjointView<MatrixTypeNestedNonRef, Mode>(m_matrix);
}
/** This is the const version of selfadjointView() */
EIGEN_DEVICE_FUNC const SelfAdjointView<MatrixTypeNestedNonRef, Mode> selfadjointView() const {
EIGEN_STATIC_ASSERT((Mode & (UnitDiag | ZeroDiag)) == 0, PROGRAMMING_ERROR);
return SelfAdjointView<MatrixTypeNestedNonRef, Mode>(m_matrix);
}
/** \returns the determinant of the triangular matrix
* \sa MatrixBase::determinant() */
EIGEN_DEVICE_FUNC Scalar determinant() const {
if (Mode & UnitDiag)
return 1;
else if (Mode & ZeroDiag)
return 0;
else
return m_matrix.diagonal().prod();
}
protected:
MatrixTypeNested m_matrix;
};
/** \ingroup Core_Module
*
* \brief Base class for a triangular part in a \b dense matrix
*
* This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be
* instantiated. It extends class TriangularView with additional methods which available for dense expressions only.
*
* \sa class TriangularView, MatrixBase::triangularView()
*/
template <typename MatrixType_, unsigned int Mode_>
class TriangularViewImpl<MatrixType_, Mode_, Dense> : public TriangularBase<TriangularView<MatrixType_, Mode_>> {
public:
typedef TriangularView<MatrixType_, Mode_> TriangularViewType;
typedef TriangularBase<TriangularViewType> Base;
typedef typename internal::traits<TriangularViewType>::Scalar Scalar;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::PlainObject DenseMatrixType;
typedef DenseMatrixType PlainObject;
public:
using Base::derived;
using Base::evalToLazy;
typedef typename internal::traits<TriangularViewType>::StorageKind StorageKind;
enum { Mode = Mode_, Flags = internal::traits<TriangularViewType>::Flags };
/** \returns the outer-stride of the underlying dense matrix
* \sa DenseCoeffsBase::outerStride() */
EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
/** \returns the inner-stride of the underlying dense matrix
* \sa DenseCoeffsBase::innerStride() */
EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
/** \sa MatrixBase::operator+=() */
template <typename Other>
EIGEN_DEVICE_FUNC TriangularViewType& operator+=(const DenseBase<Other>& other) {
internal::call_assignment_no_alias(derived(), other.derived(),
internal::add_assign_op<Scalar, typename Other::Scalar>());
return derived();
}
/** \sa MatrixBase::operator-=() */
template <typename Other>
EIGEN_DEVICE_FUNC TriangularViewType& operator-=(const DenseBase<Other>& other) {
internal::call_assignment_no_alias(derived(), other.derived(),
internal::sub_assign_op<Scalar, typename Other::Scalar>());
return derived();
}
/** \sa MatrixBase::operator*=() */
EIGEN_DEVICE_FUNC TriangularViewType& operator*=(const typename internal::traits<MatrixType>::Scalar& other) {
return *this = derived().nestedExpression() * other;
}
/** \sa DenseBase::operator/=() */
EIGEN_DEVICE_FUNC TriangularViewType& operator/=(const typename internal::traits<MatrixType>::Scalar& other) {
return *this = derived().nestedExpression() / other;
}
/** \sa MatrixBase::fill() */
EIGEN_DEVICE_FUNC void fill(const Scalar& value) { setConstant(value); }
/** \sa MatrixBase::setConstant() */
EIGEN_DEVICE_FUNC TriangularViewType& setConstant(const Scalar& value) {
return *this = MatrixType::Constant(derived().rows(), derived().cols(), value);
}
/** \sa MatrixBase::setZero() */
EIGEN_DEVICE_FUNC TriangularViewType& setZero() { return setConstant(Scalar(0)); }
/** \sa MatrixBase::setOnes() */
EIGEN_DEVICE_FUNC TriangularViewType& setOnes() { return setConstant(Scalar(1)); }
/** \sa MatrixBase::coeff()
* \warning the coordinates must fit into the referenced triangular part
*/
EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const {
Base::check_coordinates_internal(row, col);
return derived().nestedExpression().coeff(row, col);
}
/** \sa MatrixBase::coeffRef()
* \warning the coordinates must fit into the referenced triangular part
*/
EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) {
EIGEN_STATIC_ASSERT_LVALUE(TriangularViewType);
Base::check_coordinates_internal(row, col);
return derived().nestedExpression().coeffRef(row, col);
}
/** Assigns a triangular matrix to a triangular part of a dense matrix */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC TriangularViewType& operator=(const TriangularBase<OtherDerived>& other);
/** Shortcut for\code *this = other.other.triangularView<(*this)::Mode>() \endcode */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC TriangularViewType& operator=(const MatrixBase<OtherDerived>& other);
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_DEVICE_FUNC TriangularViewType& operator=(const TriangularViewImpl& other) {
return *this = other.derived().nestedExpression();
}
template <typename OtherDerived>
/** \deprecated */
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC void lazyAssign(const TriangularBase<OtherDerived>& other);
template <typename OtherDerived>
/** \deprecated */
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC void lazyAssign(const MatrixBase<OtherDerived>& other);
#endif
/** Efficient triangular matrix times vector/matrix product */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC const Product<TriangularViewType, OtherDerived> operator*(
const MatrixBase<OtherDerived>& rhs) const {
return Product<TriangularViewType, OtherDerived>(derived(), rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template <typename OtherDerived>
friend EIGEN_DEVICE_FUNC const Product<OtherDerived, TriangularViewType> operator*(
const MatrixBase<OtherDerived>& lhs, const TriangularViewImpl& rhs) {
return Product<OtherDerived, TriangularViewType>(lhs.derived(), rhs.derived());
}
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
*
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if
* \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if
* \a Side==OnTheRight.
*
* Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft
*
* The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
* diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
* is an upper (resp. lower) triangular matrix.
*
* Example: \include Triangular_solve.cpp
* Output: \verbinclude Triangular_solve.out
*
* This function returns an expression of the inverse-multiply and can works in-place if it is assigned
* to the same matrix or vector \a other.
*
* For users coming from BLAS, this function (and more specifically solveInPlace()) offer
* all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
*
* \sa TriangularView::solveInPlace()
*/
template <int Side, typename Other>
inline const internal::triangular_solve_retval<Side, TriangularViewType, Other> solve(
const MatrixBase<Other>& other) const;
/** "in-place" version of TriangularView::solve() where the result is written in \a other
*
* \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
* This function will const_cast it, so constness isn't honored here.
*
* Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft
*
* See TriangularView:solve() for the details.
*/
template <int Side, typename OtherDerived>
EIGEN_DEVICE_FUNC void solveInPlace(const MatrixBase<OtherDerived>& other) const;
template <typename OtherDerived>
EIGEN_DEVICE_FUNC void solveInPlace(const MatrixBase<OtherDerived>& other) const {
return solveInPlace<OnTheLeft>(other);
}
/** Swaps the coefficients of the common triangular parts of two matrices */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC
#ifdef EIGEN_PARSED_BY_DOXYGEN
void
swap(TriangularBase<OtherDerived>& other)
#else
void
swap(TriangularBase<OtherDerived> const& other)
#endif
{
EIGEN_STATIC_ASSERT_LVALUE(OtherDerived);
call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
/** Shortcut for \code (*this).swap(other.triangularView<(*this)::Mode>()) \endcode */
template <typename OtherDerived>
/** \deprecated */
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC void swap(MatrixBase<OtherDerived> const& other) {
EIGEN_STATIC_ASSERT_LVALUE(OtherDerived);
call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
template <typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _solve_impl(const RhsType& rhs, DstType& dst) const {
if (!internal::is_same_dense(dst, rhs)) dst = rhs;
this->solveInPlace(dst);
}
template <typename ProductType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha,
bool beta);
protected:
EIGEN_DEFAULT_COPY_CONSTRUCTOR(TriangularViewImpl)
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TriangularViewImpl)
};
/***************************************************************************
* Implementation of triangular evaluation/assignment
***************************************************************************/
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME should we keep that possibility
template <typename MatrixType, unsigned int Mode>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline TriangularView<MatrixType, Mode>& TriangularViewImpl<MatrixType, Mode, Dense>::operator=(
const MatrixBase<OtherDerived>& other) {
internal::call_assignment_no_alias(derived(), other.derived(),
internal::assign_op<Scalar, typename OtherDerived::Scalar>());
return derived();
}
// FIXME should we keep that possibility
template <typename MatrixType, unsigned int Mode>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const MatrixBase<OtherDerived>& other) {
internal::call_assignment_no_alias(derived(), other.template triangularView<Mode>());
}
template <typename MatrixType, unsigned int Mode>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline TriangularView<MatrixType, Mode>& TriangularViewImpl<MatrixType, Mode, Dense>::operator=(
const TriangularBase<OtherDerived>& other) {
eigen_assert(Mode == int(OtherDerived::Mode));
internal::call_assignment(derived(), other.derived());
return derived();
}
template <typename MatrixType, unsigned int Mode>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(
const TriangularBase<OtherDerived>& other) {
eigen_assert(Mode == int(OtherDerived::Mode));
internal::call_assignment_no_alias(derived(), other.derived());
}
#endif
/***************************************************************************
* Implementation of TriangularBase methods
***************************************************************************/
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
* If the matrix is triangular, the opposite part is set to zero. */
template <typename Derived>
template <typename DenseDerived>
EIGEN_DEVICE_FUNC void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived>& other) const {
evalToLazy(other.derived());
}
/***************************************************************************
* Implementation of TriangularView methods
***************************************************************************/
/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/
/**
* \returns an expression of a triangular view extracted from the current matrix
*
* The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper,
* \c #Lower, \c #StrictlyLower, \c #UnitLower.
*
* Example: \include MatrixBase_triangularView.cpp
* Output: \verbinclude MatrixBase_triangularView.out
*
* \sa class TriangularView
*/
template <typename Derived>
template <unsigned int Mode>
EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView() {
return typename TriangularViewReturnType<Mode>::Type(derived());
}
/** This is the const version of MatrixBase::triangularView() */
template <typename Derived>
template <unsigned int Mode>
EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView() const {
return typename ConstTriangularViewReturnType<Mode>::Type(derived());
}
/** \returns true if *this is approximately equal to an upper triangular matrix,
* within the precision given by \a prec.
*
* \sa isLowerTriangular()
*/
template <typename Derived>
bool MatrixBase<Derived>::isUpperTriangular(const RealScalar& prec) const {
RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
for (Index j = 0; j < cols(); ++j) {
Index maxi = numext::mini(j, rows() - 1);
for (Index i = 0; i <= maxi; ++i) {
RealScalar absValue = numext::abs(coeff(i, j));
if (absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
}
}
RealScalar threshold = maxAbsOnUpperPart * prec;
for (Index j = 0; j < cols(); ++j)
for (Index i = j + 1; i < rows(); ++i)
if (numext::abs(coeff(i, j)) > threshold) return false;
return true;
}
/** \returns true if *this is approximately equal to a lower triangular matrix,
* within the precision given by \a prec.
*
* \sa isUpperTriangular()
*/
template <typename Derived>
bool MatrixBase<Derived>::isLowerTriangular(const RealScalar& prec) const {
RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
for (Index j = 0; j < cols(); ++j)
for (Index i = j; i < rows(); ++i) {
RealScalar absValue = numext::abs(coeff(i, j));
if (absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
}
RealScalar threshold = maxAbsOnLowerPart * prec;
for (Index j = 1; j < cols(); ++j) {
Index maxi = numext::mini(j, rows() - 1);
for (Index i = 0; i < maxi; ++i)
if (numext::abs(coeff(i, j)) > threshold) return false;
}
return true;
}
/***************************************************************************
****************************************************************************
* Evaluators and Assignment of triangular expressions
***************************************************************************
***************************************************************************/
namespace internal {
// TODO currently a triangular expression has the form TriangularView<.,.>
// in the future triangular-ness should be defined by the expression traits
// such that Transpose<TriangularView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make
// it work)
template <typename MatrixType, unsigned int Mode>
struct evaluator_traits<TriangularView<MatrixType, Mode>> {
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef typename glue_shapes<typename evaluator_traits<MatrixType>::Shape, TriangularShape>::type Shape;
};
template <typename MatrixType, unsigned int Mode>
struct unary_evaluator<TriangularView<MatrixType, Mode>, IndexBased> : evaluator<internal::remove_all_t<MatrixType>> {
typedef TriangularView<MatrixType, Mode> XprType;
typedef evaluator<internal::remove_all_t<MatrixType>> Base;
EIGEN_DEVICE_FUNC unary_evaluator(const XprType& xpr) : Base(xpr.nestedExpression()) {}
};
// Additional assignment kinds:
struct Triangular2Triangular {};
struct Triangular2Dense {};
struct Dense2Triangular {};
template <typename Kernel, unsigned int Mode, int UnrollCount, bool ClearOpposite>
struct triangular_assignment_loop;
/** \internal Specialization of the dense assignment kernel for triangular matrices.
* The main difference is that the triangular, diagonal, and opposite parts are processed through three different
* functions. \tparam UpLo must be either Lower or Upper \tparam Mode must be either 0, UnitDiag, ZeroDiag, or
* SelfAdjoint
*/
template <int UpLo, int Mode, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor,
int Version = Specialized>
class triangular_dense_assignment_kernel
: public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> {
protected:
typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base;
typedef typename Base::DstXprType DstXprType;
typedef typename Base::SrcXprType SrcXprType;
using Base::m_dst;
using Base::m_functor;
using Base::m_src;
public:
typedef typename Base::DstEvaluatorType DstEvaluatorType;
typedef typename Base::SrcEvaluatorType SrcEvaluatorType;
typedef typename Base::Scalar Scalar;
typedef typename Base::AssignmentTraits AssignmentTraits;
EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType& dst, const SrcEvaluatorType& src,
const Functor& func, DstXprType& dstExpr)
: Base(dst, src, func, dstExpr) {}
#ifdef EIGEN_INTERNAL_DEBUGGING
EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) {
eigen_internal_assert(row != col);
Base::assignCoeff(row, col);
}
#else
using Base::assignCoeff;
#endif
EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) {
if (Mode == UnitDiag && SetOpposite)
m_functor.assignCoeff(m_dst.coeffRef(id, id), Scalar(1));
else if (Mode == ZeroDiag && SetOpposite)
m_functor.assignCoeff(m_dst.coeffRef(id, id), Scalar(0));
else if (Mode == 0)
Base::assignCoeff(id, id);
}
EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index row, Index col) {
eigen_internal_assert(row != col);
if (SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(row, col), Scalar(0));
}
};
template <int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src,
const Functor& func) {
typedef evaluator<DstXprType> DstEvaluatorType;
typedef evaluator<SrcXprType> SrcEvaluatorType;
SrcEvaluatorType srcEvaluator(src);
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
DstEvaluatorType dstEvaluator(dst);
typedef triangular_dense_assignment_kernel<Mode&(Lower | Upper), Mode&(UnitDiag | ZeroDiag | SelfAdjoint),
SetOpposite, DstEvaluatorType, SrcEvaluatorType, Functor>
Kernel;
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
enum {
unroll = DstXprType::SizeAtCompileTime != Dynamic && SrcEvaluatorType::CoeffReadCost < HugeCost &&
DstXprType::SizeAtCompileTime *
(int(DstEvaluatorType::CoeffReadCost) + int(SrcEvaluatorType::CoeffReadCost)) / 2 <=
EIGEN_UNROLLING_LIMIT
};
triangular_assignment_loop<Kernel, Mode, unroll ? int(DstXprType::SizeAtCompileTime) : Dynamic, SetOpposite>::run(
kernel);
}
template <int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src) {
call_triangular_assignment_loop<Mode, SetOpposite>(
dst, src, internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>());
}
template <>
struct AssignmentKind<TriangularShape, TriangularShape> {
typedef Triangular2Triangular Kind;
};
template <>
struct AssignmentKind<DenseShape, TriangularShape> {
typedef Triangular2Dense Kind;
};
template <>
struct AssignmentKind<TriangularShape, DenseShape> {
typedef Dense2Triangular Kind;
};
template <typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Triangular> {
EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, const Functor& func) {
eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode));
call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
}
};
template <typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Dense> {
EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, const Functor& func) {
call_triangular_assignment_loop<SrcXprType::Mode, (int(SrcXprType::Mode) & int(SelfAdjoint)) == 0>(dst, src, func);
}
};
template <typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Triangular> {
EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, const Functor& func) {
call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
}
};
template <typename Kernel, unsigned int Mode, int UnrollCount, bool SetOpposite>
struct triangular_assignment_loop {
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
enum {
col = (UnrollCount - 1) / DstXprType::RowsAtCompileTime,
row = (UnrollCount - 1) % DstXprType::RowsAtCompileTime
};
typedef typename Kernel::Scalar Scalar;
EIGEN_DEVICE_FUNC static inline void run(Kernel& kernel) {
triangular_assignment_loop<Kernel, Mode, UnrollCount - 1, SetOpposite>::run(kernel);
if (row == col)
kernel.assignDiagonalCoeff(row);
else if (((Mode & Lower) && row > col) || ((Mode & Upper) && row < col))
kernel.assignCoeff(row, col);
else if (SetOpposite)
kernel.assignOppositeCoeff(row, col);
}
};
// prevent buggy user code from causing an infinite recursion
template <typename Kernel, unsigned int Mode, bool SetOpposite>
struct triangular_assignment_loop<Kernel, Mode, 0, SetOpposite> {
EIGEN_DEVICE_FUNC static inline void run(Kernel&) {}
};
// TODO: experiment with a recursive assignment procedure splitting the current
// triangular part into one rectangular and two triangular parts.
template <typename Kernel, unsigned int Mode, bool SetOpposite>
struct triangular_assignment_loop<Kernel, Mode, Dynamic, SetOpposite> {
typedef typename Kernel::Scalar Scalar;
EIGEN_DEVICE_FUNC static inline void run(Kernel& kernel) {
for (Index j = 0; j < kernel.cols(); ++j) {
Index maxi = numext::mini(j, kernel.rows());
Index i = 0;
if (((Mode & Lower) && SetOpposite) || (Mode & Upper)) {
for (; i < maxi; ++i)
if (Mode & Upper)
kernel.assignCoeff(i, j);
else
kernel.assignOppositeCoeff(i, j);
} else
i = maxi;
if (i < kernel.rows()) // then i==j
kernel.assignDiagonalCoeff(i++);
if (((Mode & Upper) && SetOpposite) || (Mode & Lower)) {
for (; i < kernel.rows(); ++i)
if (Mode & Lower)
kernel.assignCoeff(i, j);
else
kernel.assignOppositeCoeff(i, j);
}
}
}
};
} // end namespace internal
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
* If the matrix is triangular, the opposite part is set to zero. */
template <typename Derived>
template <typename DenseDerived>
EIGEN_DEVICE_FUNC void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived>& other) const {
other.derived().resize(this->rows(), this->cols());
internal::call_triangular_assignment_loop<Derived::Mode,
(int(Derived::Mode) & int(SelfAdjoint)) == 0 /* SetOpposite */>(
other.derived(), derived().nestedExpression());
}
namespace internal {
// Triangular = Product
template <typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs, Rhs, DefaultProduct>,
internal::assign_op<Scalar, typename Product<Lhs, Rhs, DefaultProduct>::Scalar>, Dense2Triangular> {
typedef Product<Lhs, Rhs, DefaultProduct> SrcXprType;
static void run(DstXprType& dst, const SrcXprType& src,
const internal::assign_op<Scalar, typename SrcXprType::Scalar>&) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
dst._assignProduct(src, Scalar(1), false);
}
};
// Triangular += Product
template <typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs, Rhs, DefaultProduct>,
internal::add_assign_op<Scalar, typename Product<Lhs, Rhs, DefaultProduct>::Scalar>,
Dense2Triangular> {
typedef Product<Lhs, Rhs, DefaultProduct> SrcXprType;
static void run(DstXprType& dst, const SrcXprType& src,
const internal::add_assign_op<Scalar, typename SrcXprType::Scalar>&) {
dst._assignProduct(src, Scalar(1), true);
}
};
// Triangular -= Product
template <typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs, Rhs, DefaultProduct>,
internal::sub_assign_op<Scalar, typename Product<Lhs, Rhs, DefaultProduct>::Scalar>,
Dense2Triangular> {
typedef Product<Lhs, Rhs, DefaultProduct> SrcXprType;
static void run(DstXprType& dst, const SrcXprType& src,
const internal::sub_assign_op<Scalar, typename SrcXprType::Scalar>&) {
dst._assignProduct(src, Scalar(-1), true);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_TRIANGULARMATRIX_H