| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_TRIANGULARMATRIX_H |
| #define EIGEN_TRIANGULARMATRIX_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <int Side, typename TriangularType, typename Rhs> |
| struct triangular_solve_retval; |
| |
| } |
| |
| /** \class TriangularBase |
| * \ingroup Core_Module |
| * |
| * \brief Base class for triangular part in a matrix |
| */ |
| template <typename Derived> |
| class TriangularBase : public EigenBase<Derived> { |
| public: |
| enum { |
| Mode = internal::traits<Derived>::Mode, |
| RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, |
| ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, |
| MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime, |
| |
| SizeAtCompileTime = (internal::size_of_xpr_at_compile_time<Derived>::ret), |
| /**< This is equal to the number of coefficients, i.e. the number of |
| * rows times the number of columns, or to \a Dynamic if this is not |
| * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ |
| |
| MaxSizeAtCompileTime = internal::size_at_compile_time(internal::traits<Derived>::MaxRowsAtCompileTime, |
| internal::traits<Derived>::MaxColsAtCompileTime) |
| |
| }; |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef typename internal::traits<Derived>::StorageKind StorageKind; |
| typedef typename internal::traits<Derived>::StorageIndex StorageIndex; |
| typedef typename internal::traits<Derived>::FullMatrixType DenseMatrixType; |
| typedef DenseMatrixType DenseType; |
| typedef Derived const& Nested; |
| |
| EIGEN_DEVICE_FUNC inline TriangularBase() { |
| eigen_assert(!((int(Mode) & int(UnitDiag)) && (int(Mode) & int(ZeroDiag)))); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return derived().rows(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return derived().cols(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index outerStride() const EIGEN_NOEXCEPT { return derived().outerStride(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index innerStride() const EIGEN_NOEXCEPT { return derived().innerStride(); } |
| |
| // dummy resize function |
| EIGEN_DEVICE_FUNC void resize(Index rows, Index cols) { |
| EIGEN_UNUSED_VARIABLE(rows); |
| EIGEN_UNUSED_VARIABLE(cols); |
| eigen_assert(rows == this->rows() && cols == this->cols()); |
| } |
| |
| EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const { return derived().coeff(row, col); } |
| EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row, col); } |
| |
| /** \see MatrixBase::copyCoeff(row,col) |
| */ |
| template <typename Other> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other) { |
| derived().coeffRef(row, col) = other.coeff(row, col); |
| } |
| |
| EIGEN_DEVICE_FUNC inline Scalar operator()(Index row, Index col) const { |
| check_coordinates(row, col); |
| return coeff(row, col); |
| } |
| EIGEN_DEVICE_FUNC inline Scalar& operator()(Index row, Index col) { |
| check_coordinates(row, col); |
| return coeffRef(row, col); |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast<const Derived*>(this); } |
| EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast<Derived*>(this); } |
| #endif // not EIGEN_PARSED_BY_DOXYGEN |
| |
| template <typename DenseDerived> |
| EIGEN_DEVICE_FUNC void evalTo(MatrixBase<DenseDerived>& other) const; |
| template <typename DenseDerived> |
| EIGEN_DEVICE_FUNC void evalToLazy(MatrixBase<DenseDerived>& other) const; |
| |
| EIGEN_DEVICE_FUNC DenseMatrixType toDenseMatrix() const { |
| DenseMatrixType res(rows(), cols()); |
| evalToLazy(res); |
| return res; |
| } |
| |
| protected: |
| void check_coordinates(Index row, Index col) const { |
| EIGEN_ONLY_USED_FOR_DEBUG(row); |
| EIGEN_ONLY_USED_FOR_DEBUG(col); |
| eigen_assert(col >= 0 && col < cols() && row >= 0 && row < rows()); |
| const int mode = int(Mode) & ~SelfAdjoint; |
| EIGEN_ONLY_USED_FOR_DEBUG(mode); |
| eigen_assert((mode == Upper && col >= row) || (mode == Lower && col <= row) || |
| ((mode == StrictlyUpper || mode == UnitUpper) && col > row) || |
| ((mode == StrictlyLower || mode == UnitLower) && col < row)); |
| } |
| |
| #ifdef EIGEN_INTERNAL_DEBUGGING |
| void check_coordinates_internal(Index row, Index col) const { check_coordinates(row, col); } |
| #else |
| void check_coordinates_internal(Index, Index) const {} |
| #endif |
| }; |
| |
| /** \class TriangularView |
| * \ingroup Core_Module |
| * |
| * \brief Expression of a triangular part in a matrix |
| * |
| * \tparam MatrixType the type of the object in which we are taking the triangular part |
| * \tparam Mode the kind of triangular matrix expression to construct. Can be #Upper, |
| * #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower. |
| * This is in fact a bit field; it must have either #Upper or #Lower, |
| * and additionally it may have #UnitDiag or #ZeroDiag or neither. |
| * |
| * This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular |
| * matrices one should speak of "trapezoid" parts. This class is the return type |
| * of MatrixBase::triangularView() and SparseMatrixBase::triangularView(), and most of the time this is the only way it |
| * is used. |
| * |
| * \sa MatrixBase::triangularView() |
| */ |
| namespace internal { |
| template <typename MatrixType, unsigned int Mode_> |
| struct traits<TriangularView<MatrixType, Mode_>> : traits<MatrixType> { |
| typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested; |
| typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNestedNonRef; |
| typedef remove_all_t<MatrixTypeNested> MatrixTypeNestedCleaned; |
| typedef typename MatrixType::PlainObject FullMatrixType; |
| typedef MatrixType ExpressionType; |
| enum { |
| Mode = Mode_, |
| FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0, |
| Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & |
| (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) |
| }; |
| }; |
| } // namespace internal |
| |
| template <typename MatrixType_, unsigned int Mode_, typename StorageKind> |
| class TriangularViewImpl; |
| |
| template <typename MatrixType_, unsigned int Mode_> |
| class TriangularView |
| : public TriangularViewImpl<MatrixType_, Mode_, typename internal::traits<MatrixType_>::StorageKind> { |
| public: |
| typedef TriangularViewImpl<MatrixType_, Mode_, typename internal::traits<MatrixType_>::StorageKind> Base; |
| typedef typename internal::traits<TriangularView>::Scalar Scalar; |
| typedef MatrixType_ MatrixType; |
| |
| protected: |
| typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested; |
| typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef; |
| |
| typedef internal::remove_all_t<typename MatrixType::ConjugateReturnType> MatrixConjugateReturnType; |
| typedef TriangularView<std::add_const_t<MatrixType>, Mode_> ConstTriangularView; |
| |
| public: |
| typedef typename internal::traits<TriangularView>::StorageKind StorageKind; |
| typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned NestedExpression; |
| |
| enum { |
| Mode = Mode_, |
| Flags = internal::traits<TriangularView>::Flags, |
| TransposeMode = (int(Mode) & int(Upper) ? Lower : 0) | (int(Mode) & int(Lower) ? Upper : 0) | |
| (int(Mode) & int(UnitDiag)) | (int(Mode) & int(ZeroDiag)), |
| IsVectorAtCompileTime = false |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit inline TriangularView(MatrixType& matrix) : m_matrix(matrix) {} |
| |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TriangularView) |
| |
| /** \copydoc EigenBase::rows() */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } |
| /** \copydoc EigenBase::cols() */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } |
| |
| /** \returns a const reference to the nested expression */ |
| EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } |
| |
| /** \returns a reference to the nested expression */ |
| EIGEN_DEVICE_FUNC NestedExpression& nestedExpression() { return m_matrix; } |
| |
| typedef TriangularView<const MatrixConjugateReturnType, Mode> ConjugateReturnType; |
| /** \sa MatrixBase::conjugate() const */ |
| EIGEN_DEVICE_FUNC inline const ConjugateReturnType conjugate() const { |
| return ConjugateReturnType(m_matrix.conjugate()); |
| } |
| |
| /** \returns an expression of the complex conjugate of \c *this if Cond==true, |
| * returns \c *this otherwise. |
| */ |
| template <bool Cond> |
| EIGEN_DEVICE_FUNC inline std::conditional_t<Cond, ConjugateReturnType, ConstTriangularView> conjugateIf() const { |
| typedef std::conditional_t<Cond, ConjugateReturnType, ConstTriangularView> ReturnType; |
| return ReturnType(m_matrix.template conjugateIf<Cond>()); |
| } |
| |
| typedef TriangularView<const typename MatrixType::AdjointReturnType, TransposeMode> AdjointReturnType; |
| /** \sa MatrixBase::adjoint() const */ |
| EIGEN_DEVICE_FUNC inline const AdjointReturnType adjoint() const { return AdjointReturnType(m_matrix.adjoint()); } |
| |
| typedef TriangularView<typename MatrixType::TransposeReturnType, TransposeMode> TransposeReturnType; |
| /** \sa MatrixBase::transpose() */ |
| template <class Dummy = int> |
| EIGEN_DEVICE_FUNC inline TransposeReturnType transpose( |
| std::enable_if_t<Eigen::internal::is_lvalue<MatrixType>::value, Dummy*> = nullptr) { |
| typename MatrixType::TransposeReturnType tmp(m_matrix); |
| return TransposeReturnType(tmp); |
| } |
| |
| typedef TriangularView<const typename MatrixType::ConstTransposeReturnType, TransposeMode> ConstTransposeReturnType; |
| /** \sa MatrixBase::transpose() const */ |
| EIGEN_DEVICE_FUNC inline const ConstTransposeReturnType transpose() const { |
| return ConstTransposeReturnType(m_matrix.transpose()); |
| } |
| |
| template <typename Other> |
| EIGEN_DEVICE_FUNC inline const Solve<TriangularView, Other> solve(const MatrixBase<Other>& other) const { |
| return Solve<TriangularView, Other>(*this, other.derived()); |
| } |
| |
| // workaround MSVC ICE |
| #if EIGEN_COMP_MSVC |
| template <int Side, typename Other> |
| EIGEN_DEVICE_FUNC inline const internal::triangular_solve_retval<Side, TriangularView, Other> solve( |
| const MatrixBase<Other>& other) const { |
| return Base::template solve<Side>(other); |
| } |
| #else |
| using Base::solve; |
| #endif |
| |
| /** \returns a selfadjoint view of the referenced triangular part which must be either \c #Upper or \c #Lower. |
| * |
| * This is a shortcut for \code this->nestedExpression().selfadjointView<(*this)::Mode>() \endcode |
| * \sa MatrixBase::selfadjointView() */ |
| EIGEN_DEVICE_FUNC SelfAdjointView<MatrixTypeNestedNonRef, Mode> selfadjointView() { |
| EIGEN_STATIC_ASSERT((Mode & (UnitDiag | ZeroDiag)) == 0, PROGRAMMING_ERROR); |
| return SelfAdjointView<MatrixTypeNestedNonRef, Mode>(m_matrix); |
| } |
| |
| /** This is the const version of selfadjointView() */ |
| EIGEN_DEVICE_FUNC const SelfAdjointView<MatrixTypeNestedNonRef, Mode> selfadjointView() const { |
| EIGEN_STATIC_ASSERT((Mode & (UnitDiag | ZeroDiag)) == 0, PROGRAMMING_ERROR); |
| return SelfAdjointView<MatrixTypeNestedNonRef, Mode>(m_matrix); |
| } |
| |
| /** \returns the determinant of the triangular matrix |
| * \sa MatrixBase::determinant() */ |
| EIGEN_DEVICE_FUNC Scalar determinant() const { |
| if (Mode & UnitDiag) |
| return 1; |
| else if (Mode & ZeroDiag) |
| return 0; |
| else |
| return m_matrix.diagonal().prod(); |
| } |
| |
| protected: |
| MatrixTypeNested m_matrix; |
| }; |
| |
| /** \ingroup Core_Module |
| * |
| * \brief Base class for a triangular part in a \b dense matrix |
| * |
| * This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be |
| * instantiated. It extends class TriangularView with additional methods which available for dense expressions only. |
| * |
| * \sa class TriangularView, MatrixBase::triangularView() |
| */ |
| template <typename MatrixType_, unsigned int Mode_> |
| class TriangularViewImpl<MatrixType_, Mode_, Dense> : public TriangularBase<TriangularView<MatrixType_, Mode_>> { |
| public: |
| typedef TriangularView<MatrixType_, Mode_> TriangularViewType; |
| |
| typedef TriangularBase<TriangularViewType> Base; |
| typedef typename internal::traits<TriangularViewType>::Scalar Scalar; |
| |
| typedef MatrixType_ MatrixType; |
| typedef typename MatrixType::PlainObject DenseMatrixType; |
| typedef DenseMatrixType PlainObject; |
| |
| public: |
| using Base::derived; |
| using Base::evalToLazy; |
| |
| typedef typename internal::traits<TriangularViewType>::StorageKind StorageKind; |
| |
| enum { Mode = Mode_, Flags = internal::traits<TriangularViewType>::Flags }; |
| |
| /** \returns the outer-stride of the underlying dense matrix |
| * \sa DenseCoeffsBase::outerStride() */ |
| EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().nestedExpression().outerStride(); } |
| /** \returns the inner-stride of the underlying dense matrix |
| * \sa DenseCoeffsBase::innerStride() */ |
| EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().nestedExpression().innerStride(); } |
| |
| /** \sa MatrixBase::operator+=() */ |
| template <typename Other> |
| EIGEN_DEVICE_FUNC TriangularViewType& operator+=(const DenseBase<Other>& other) { |
| internal::call_assignment_no_alias(derived(), other.derived(), |
| internal::add_assign_op<Scalar, typename Other::Scalar>()); |
| return derived(); |
| } |
| /** \sa MatrixBase::operator-=() */ |
| template <typename Other> |
| EIGEN_DEVICE_FUNC TriangularViewType& operator-=(const DenseBase<Other>& other) { |
| internal::call_assignment_no_alias(derived(), other.derived(), |
| internal::sub_assign_op<Scalar, typename Other::Scalar>()); |
| return derived(); |
| } |
| |
| /** \sa MatrixBase::operator*=() */ |
| EIGEN_DEVICE_FUNC TriangularViewType& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { |
| return *this = derived().nestedExpression() * other; |
| } |
| /** \sa DenseBase::operator/=() */ |
| EIGEN_DEVICE_FUNC TriangularViewType& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { |
| return *this = derived().nestedExpression() / other; |
| } |
| |
| /** \sa MatrixBase::fill() */ |
| EIGEN_DEVICE_FUNC void fill(const Scalar& value) { setConstant(value); } |
| /** \sa MatrixBase::setConstant() */ |
| EIGEN_DEVICE_FUNC TriangularViewType& setConstant(const Scalar& value) { |
| return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); |
| } |
| /** \sa MatrixBase::setZero() */ |
| EIGEN_DEVICE_FUNC TriangularViewType& setZero() { return setConstant(Scalar(0)); } |
| /** \sa MatrixBase::setOnes() */ |
| EIGEN_DEVICE_FUNC TriangularViewType& setOnes() { return setConstant(Scalar(1)); } |
| |
| /** \sa MatrixBase::coeff() |
| * \warning the coordinates must fit into the referenced triangular part |
| */ |
| EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const { |
| Base::check_coordinates_internal(row, col); |
| return derived().nestedExpression().coeff(row, col); |
| } |
| |
| /** \sa MatrixBase::coeffRef() |
| * \warning the coordinates must fit into the referenced triangular part |
| */ |
| EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { |
| EIGEN_STATIC_ASSERT_LVALUE(TriangularViewType); |
| Base::check_coordinates_internal(row, col); |
| return derived().nestedExpression().coeffRef(row, col); |
| } |
| |
| /** Assigns a triangular matrix to a triangular part of a dense matrix */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC TriangularViewType& operator=(const TriangularBase<OtherDerived>& other); |
| |
| /** Shortcut for\code *this = other.other.triangularView<(*this)::Mode>() \endcode */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC TriangularViewType& operator=(const MatrixBase<OtherDerived>& other); |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| EIGEN_DEVICE_FUNC TriangularViewType& operator=(const TriangularViewImpl& other) { |
| return *this = other.derived().nestedExpression(); |
| } |
| |
| template <typename OtherDerived> |
| /** \deprecated */ |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC void lazyAssign(const TriangularBase<OtherDerived>& other); |
| |
| template <typename OtherDerived> |
| /** \deprecated */ |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC void lazyAssign(const MatrixBase<OtherDerived>& other); |
| #endif |
| |
| /** Efficient triangular matrix times vector/matrix product */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC const Product<TriangularViewType, OtherDerived> operator*( |
| const MatrixBase<OtherDerived>& rhs) const { |
| return Product<TriangularViewType, OtherDerived>(derived(), rhs.derived()); |
| } |
| |
| /** Efficient vector/matrix times triangular matrix product */ |
| template <typename OtherDerived> |
| friend EIGEN_DEVICE_FUNC const Product<OtherDerived, TriangularViewType> operator*( |
| const MatrixBase<OtherDerived>& lhs, const TriangularViewImpl& rhs) { |
| return Product<OtherDerived, TriangularViewType>(lhs.derived(), rhs.derived()); |
| } |
| |
| /** \returns the product of the inverse of \c *this with \a other, \a *this being triangular. |
| * |
| * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if |
| * \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if |
| * \a Side==OnTheRight. |
| * |
| * Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft |
| * |
| * The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the |
| * diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this |
| * is an upper (resp. lower) triangular matrix. |
| * |
| * Example: \include Triangular_solve.cpp |
| * Output: \verbinclude Triangular_solve.out |
| * |
| * This function returns an expression of the inverse-multiply and can works in-place if it is assigned |
| * to the same matrix or vector \a other. |
| * |
| * For users coming from BLAS, this function (and more specifically solveInPlace()) offer |
| * all the operations supported by the \c *TRSV and \c *TRSM BLAS routines. |
| * |
| * \sa TriangularView::solveInPlace() |
| */ |
| template <int Side, typename Other> |
| inline const internal::triangular_solve_retval<Side, TriangularViewType, Other> solve( |
| const MatrixBase<Other>& other) const; |
| |
| /** "in-place" version of TriangularView::solve() where the result is written in \a other |
| * |
| * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. |
| * This function will const_cast it, so constness isn't honored here. |
| * |
| * Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft |
| * |
| * See TriangularView:solve() for the details. |
| */ |
| template <int Side, typename OtherDerived> |
| EIGEN_DEVICE_FUNC void solveInPlace(const MatrixBase<OtherDerived>& other) const; |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC void solveInPlace(const MatrixBase<OtherDerived>& other) const { |
| return solveInPlace<OnTheLeft>(other); |
| } |
| |
| /** Swaps the coefficients of the common triangular parts of two matrices */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| void |
| swap(TriangularBase<OtherDerived>& other) |
| #else |
| void |
| swap(TriangularBase<OtherDerived> const& other) |
| #endif |
| { |
| EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); |
| call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>()); |
| } |
| |
| /** Shortcut for \code (*this).swap(other.triangularView<(*this)::Mode>()) \endcode */ |
| template <typename OtherDerived> |
| /** \deprecated */ |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC void swap(MatrixBase<OtherDerived> const& other) { |
| EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); |
| call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>()); |
| } |
| |
| template <typename RhsType, typename DstType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _solve_impl(const RhsType& rhs, DstType& dst) const { |
| if (!internal::is_same_dense(dst, rhs)) dst = rhs; |
| this->solveInPlace(dst); |
| } |
| |
| template <typename ProductType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha, |
| bool beta); |
| |
| protected: |
| EIGEN_DEFAULT_COPY_CONSTRUCTOR(TriangularViewImpl) |
| EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TriangularViewImpl) |
| }; |
| |
| /*************************************************************************** |
| * Implementation of triangular evaluation/assignment |
| ***************************************************************************/ |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| // FIXME should we keep that possibility |
| template <typename MatrixType, unsigned int Mode> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline TriangularView<MatrixType, Mode>& TriangularViewImpl<MatrixType, Mode, Dense>::operator=( |
| const MatrixBase<OtherDerived>& other) { |
| internal::call_assignment_no_alias(derived(), other.derived(), |
| internal::assign_op<Scalar, typename OtherDerived::Scalar>()); |
| return derived(); |
| } |
| |
| // FIXME should we keep that possibility |
| template <typename MatrixType, unsigned int Mode> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const MatrixBase<OtherDerived>& other) { |
| internal::call_assignment_no_alias(derived(), other.template triangularView<Mode>()); |
| } |
| |
| template <typename MatrixType, unsigned int Mode> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline TriangularView<MatrixType, Mode>& TriangularViewImpl<MatrixType, Mode, Dense>::operator=( |
| const TriangularBase<OtherDerived>& other) { |
| eigen_assert(Mode == int(OtherDerived::Mode)); |
| internal::call_assignment(derived(), other.derived()); |
| return derived(); |
| } |
| |
| template <typename MatrixType, unsigned int Mode> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign( |
| const TriangularBase<OtherDerived>& other) { |
| eigen_assert(Mode == int(OtherDerived::Mode)); |
| internal::call_assignment_no_alias(derived(), other.derived()); |
| } |
| #endif |
| |
| /*************************************************************************** |
| * Implementation of TriangularBase methods |
| ***************************************************************************/ |
| |
| /** Assigns a triangular or selfadjoint matrix to a dense matrix. |
| * If the matrix is triangular, the opposite part is set to zero. */ |
| template <typename Derived> |
| template <typename DenseDerived> |
| EIGEN_DEVICE_FUNC void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived>& other) const { |
| evalToLazy(other.derived()); |
| } |
| |
| /*************************************************************************** |
| * Implementation of TriangularView methods |
| ***************************************************************************/ |
| |
| /*************************************************************************** |
| * Implementation of MatrixBase methods |
| ***************************************************************************/ |
| |
| /** |
| * \returns an expression of a triangular view extracted from the current matrix |
| * |
| * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, |
| * \c #Lower, \c #StrictlyLower, \c #UnitLower. |
| * |
| * Example: \include MatrixBase_triangularView.cpp |
| * Output: \verbinclude MatrixBase_triangularView.out |
| * |
| * \sa class TriangularView |
| */ |
| template <typename Derived> |
| template <unsigned int Mode> |
| EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type |
| MatrixBase<Derived>::triangularView() { |
| return typename TriangularViewReturnType<Mode>::Type(derived()); |
| } |
| |
| /** This is the const version of MatrixBase::triangularView() */ |
| template <typename Derived> |
| template <unsigned int Mode> |
| EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type |
| MatrixBase<Derived>::triangularView() const { |
| return typename ConstTriangularViewReturnType<Mode>::Type(derived()); |
| } |
| |
| /** \returns true if *this is approximately equal to an upper triangular matrix, |
| * within the precision given by \a prec. |
| * |
| * \sa isLowerTriangular() |
| */ |
| template <typename Derived> |
| bool MatrixBase<Derived>::isUpperTriangular(const RealScalar& prec) const { |
| RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1); |
| for (Index j = 0; j < cols(); ++j) { |
| Index maxi = numext::mini(j, rows() - 1); |
| for (Index i = 0; i <= maxi; ++i) { |
| RealScalar absValue = numext::abs(coeff(i, j)); |
| if (absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue; |
| } |
| } |
| RealScalar threshold = maxAbsOnUpperPart * prec; |
| for (Index j = 0; j < cols(); ++j) |
| for (Index i = j + 1; i < rows(); ++i) |
| if (numext::abs(coeff(i, j)) > threshold) return false; |
| return true; |
| } |
| |
| /** \returns true if *this is approximately equal to a lower triangular matrix, |
| * within the precision given by \a prec. |
| * |
| * \sa isUpperTriangular() |
| */ |
| template <typename Derived> |
| bool MatrixBase<Derived>::isLowerTriangular(const RealScalar& prec) const { |
| RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1); |
| for (Index j = 0; j < cols(); ++j) |
| for (Index i = j; i < rows(); ++i) { |
| RealScalar absValue = numext::abs(coeff(i, j)); |
| if (absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue; |
| } |
| RealScalar threshold = maxAbsOnLowerPart * prec; |
| for (Index j = 1; j < cols(); ++j) { |
| Index maxi = numext::mini(j, rows() - 1); |
| for (Index i = 0; i < maxi; ++i) |
| if (numext::abs(coeff(i, j)) > threshold) return false; |
| } |
| return true; |
| } |
| |
| /*************************************************************************** |
| **************************************************************************** |
| * Evaluators and Assignment of triangular expressions |
| *************************************************************************** |
| ***************************************************************************/ |
| |
| namespace internal { |
| |
| // TODO currently a triangular expression has the form TriangularView<.,.> |
| // in the future triangular-ness should be defined by the expression traits |
| // such that Transpose<TriangularView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make |
| // it work) |
| template <typename MatrixType, unsigned int Mode> |
| struct evaluator_traits<TriangularView<MatrixType, Mode>> { |
| typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; |
| typedef typename glue_shapes<typename evaluator_traits<MatrixType>::Shape, TriangularShape>::type Shape; |
| }; |
| |
| template <typename MatrixType, unsigned int Mode> |
| struct unary_evaluator<TriangularView<MatrixType, Mode>, IndexBased> : evaluator<internal::remove_all_t<MatrixType>> { |
| typedef TriangularView<MatrixType, Mode> XprType; |
| typedef evaluator<internal::remove_all_t<MatrixType>> Base; |
| EIGEN_DEVICE_FUNC unary_evaluator(const XprType& xpr) : Base(xpr.nestedExpression()) {} |
| }; |
| |
| // Additional assignment kinds: |
| struct Triangular2Triangular {}; |
| struct Triangular2Dense {}; |
| struct Dense2Triangular {}; |
| |
| template <typename Kernel, unsigned int Mode, int UnrollCount, bool ClearOpposite> |
| struct triangular_assignment_loop; |
| |
| /** \internal Specialization of the dense assignment kernel for triangular matrices. |
| * The main difference is that the triangular, diagonal, and opposite parts are processed through three different |
| * functions. \tparam UpLo must be either Lower or Upper \tparam Mode must be either 0, UnitDiag, ZeroDiag, or |
| * SelfAdjoint |
| */ |
| template <int UpLo, int Mode, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, |
| int Version = Specialized> |
| class triangular_dense_assignment_kernel |
| : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> { |
| protected: |
| typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base; |
| typedef typename Base::DstXprType DstXprType; |
| typedef typename Base::SrcXprType SrcXprType; |
| using Base::m_dst; |
| using Base::m_functor; |
| using Base::m_src; |
| |
| public: |
| typedef typename Base::DstEvaluatorType DstEvaluatorType; |
| typedef typename Base::SrcEvaluatorType SrcEvaluatorType; |
| typedef typename Base::Scalar Scalar; |
| typedef typename Base::AssignmentTraits AssignmentTraits; |
| |
| EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType& dst, const SrcEvaluatorType& src, |
| const Functor& func, DstXprType& dstExpr) |
| : Base(dst, src, func, dstExpr) {} |
| |
| #ifdef EIGEN_INTERNAL_DEBUGGING |
| EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) { |
| eigen_internal_assert(row != col); |
| Base::assignCoeff(row, col); |
| } |
| #else |
| using Base::assignCoeff; |
| #endif |
| |
| EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) { |
| if (Mode == UnitDiag && SetOpposite) |
| m_functor.assignCoeff(m_dst.coeffRef(id, id), Scalar(1)); |
| else if (Mode == ZeroDiag && SetOpposite) |
| m_functor.assignCoeff(m_dst.coeffRef(id, id), Scalar(0)); |
| else if (Mode == 0) |
| Base::assignCoeff(id, id); |
| } |
| |
| EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index row, Index col) { |
| eigen_internal_assert(row != col); |
| if (SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(row, col), Scalar(0)); |
| } |
| }; |
| |
| template <int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType, typename Functor> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src, |
| const Functor& func) { |
| typedef evaluator<DstXprType> DstEvaluatorType; |
| typedef evaluator<SrcXprType> SrcEvaluatorType; |
| |
| SrcEvaluatorType srcEvaluator(src); |
| |
| Index dstRows = src.rows(); |
| Index dstCols = src.cols(); |
| if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); |
| DstEvaluatorType dstEvaluator(dst); |
| |
| typedef triangular_dense_assignment_kernel<Mode&(Lower | Upper), Mode&(UnitDiag | ZeroDiag | SelfAdjoint), |
| SetOpposite, DstEvaluatorType, SrcEvaluatorType, Functor> |
| Kernel; |
| Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived()); |
| |
| enum { |
| unroll = DstXprType::SizeAtCompileTime != Dynamic && SrcEvaluatorType::CoeffReadCost < HugeCost && |
| DstXprType::SizeAtCompileTime * |
| (int(DstEvaluatorType::CoeffReadCost) + int(SrcEvaluatorType::CoeffReadCost)) / 2 <= |
| EIGEN_UNROLLING_LIMIT |
| }; |
| |
| triangular_assignment_loop<Kernel, Mode, unroll ? int(DstXprType::SizeAtCompileTime) : Dynamic, SetOpposite>::run( |
| kernel); |
| } |
| |
| template <int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src) { |
| call_triangular_assignment_loop<Mode, SetOpposite>( |
| dst, src, internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>()); |
| } |
| |
| template <> |
| struct AssignmentKind<TriangularShape, TriangularShape> { |
| typedef Triangular2Triangular Kind; |
| }; |
| template <> |
| struct AssignmentKind<DenseShape, TriangularShape> { |
| typedef Triangular2Dense Kind; |
| }; |
| template <> |
| struct AssignmentKind<TriangularShape, DenseShape> { |
| typedef Dense2Triangular Kind; |
| }; |
| |
| template <typename DstXprType, typename SrcXprType, typename Functor> |
| struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Triangular> { |
| EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, const Functor& func) { |
| eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode)); |
| |
| call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func); |
| } |
| }; |
| |
| template <typename DstXprType, typename SrcXprType, typename Functor> |
| struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Dense> { |
| EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, const Functor& func) { |
| call_triangular_assignment_loop<SrcXprType::Mode, (int(SrcXprType::Mode) & int(SelfAdjoint)) == 0>(dst, src, func); |
| } |
| }; |
| |
| template <typename DstXprType, typename SrcXprType, typename Functor> |
| struct Assignment<DstXprType, SrcXprType, Functor, Dense2Triangular> { |
| EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, const Functor& func) { |
| call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func); |
| } |
| }; |
| |
| template <typename Kernel, unsigned int Mode, int UnrollCount, bool SetOpposite> |
| struct triangular_assignment_loop { |
| // FIXME: this is not very clean, perhaps this information should be provided by the kernel? |
| typedef typename Kernel::DstEvaluatorType DstEvaluatorType; |
| typedef typename DstEvaluatorType::XprType DstXprType; |
| |
| enum { |
| col = (UnrollCount - 1) / DstXprType::RowsAtCompileTime, |
| row = (UnrollCount - 1) % DstXprType::RowsAtCompileTime |
| }; |
| |
| typedef typename Kernel::Scalar Scalar; |
| |
| EIGEN_DEVICE_FUNC static inline void run(Kernel& kernel) { |
| triangular_assignment_loop<Kernel, Mode, UnrollCount - 1, SetOpposite>::run(kernel); |
| |
| if (row == col) |
| kernel.assignDiagonalCoeff(row); |
| else if (((Mode & Lower) && row > col) || ((Mode & Upper) && row < col)) |
| kernel.assignCoeff(row, col); |
| else if (SetOpposite) |
| kernel.assignOppositeCoeff(row, col); |
| } |
| }; |
| |
| // prevent buggy user code from causing an infinite recursion |
| template <typename Kernel, unsigned int Mode, bool SetOpposite> |
| struct triangular_assignment_loop<Kernel, Mode, 0, SetOpposite> { |
| EIGEN_DEVICE_FUNC static inline void run(Kernel&) {} |
| }; |
| |
| // TODO: experiment with a recursive assignment procedure splitting the current |
| // triangular part into one rectangular and two triangular parts. |
| |
| template <typename Kernel, unsigned int Mode, bool SetOpposite> |
| struct triangular_assignment_loop<Kernel, Mode, Dynamic, SetOpposite> { |
| typedef typename Kernel::Scalar Scalar; |
| EIGEN_DEVICE_FUNC static inline void run(Kernel& kernel) { |
| for (Index j = 0; j < kernel.cols(); ++j) { |
| Index maxi = numext::mini(j, kernel.rows()); |
| Index i = 0; |
| if (((Mode & Lower) && SetOpposite) || (Mode & Upper)) { |
| for (; i < maxi; ++i) |
| if (Mode & Upper) |
| kernel.assignCoeff(i, j); |
| else |
| kernel.assignOppositeCoeff(i, j); |
| } else |
| i = maxi; |
| |
| if (i < kernel.rows()) // then i==j |
| kernel.assignDiagonalCoeff(i++); |
| |
| if (((Mode & Upper) && SetOpposite) || (Mode & Lower)) { |
| for (; i < kernel.rows(); ++i) |
| if (Mode & Lower) |
| kernel.assignCoeff(i, j); |
| else |
| kernel.assignOppositeCoeff(i, j); |
| } |
| } |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** Assigns a triangular or selfadjoint matrix to a dense matrix. |
| * If the matrix is triangular, the opposite part is set to zero. */ |
| template <typename Derived> |
| template <typename DenseDerived> |
| EIGEN_DEVICE_FUNC void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived>& other) const { |
| other.derived().resize(this->rows(), this->cols()); |
| internal::call_triangular_assignment_loop<Derived::Mode, |
| (int(Derived::Mode) & int(SelfAdjoint)) == 0 /* SetOpposite */>( |
| other.derived(), derived().nestedExpression()); |
| } |
| |
| namespace internal { |
| |
| // Triangular = Product |
| template <typename DstXprType, typename Lhs, typename Rhs, typename Scalar> |
| struct Assignment<DstXprType, Product<Lhs, Rhs, DefaultProduct>, |
| internal::assign_op<Scalar, typename Product<Lhs, Rhs, DefaultProduct>::Scalar>, Dense2Triangular> { |
| typedef Product<Lhs, Rhs, DefaultProduct> SrcXprType; |
| static void run(DstXprType& dst, const SrcXprType& src, |
| const internal::assign_op<Scalar, typename SrcXprType::Scalar>&) { |
| Index dstRows = src.rows(); |
| Index dstCols = src.cols(); |
| if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); |
| |
| dst._assignProduct(src, Scalar(1), false); |
| } |
| }; |
| |
| // Triangular += Product |
| template <typename DstXprType, typename Lhs, typename Rhs, typename Scalar> |
| struct Assignment<DstXprType, Product<Lhs, Rhs, DefaultProduct>, |
| internal::add_assign_op<Scalar, typename Product<Lhs, Rhs, DefaultProduct>::Scalar>, |
| Dense2Triangular> { |
| typedef Product<Lhs, Rhs, DefaultProduct> SrcXprType; |
| static void run(DstXprType& dst, const SrcXprType& src, |
| const internal::add_assign_op<Scalar, typename SrcXprType::Scalar>&) { |
| dst._assignProduct(src, Scalar(1), true); |
| } |
| }; |
| |
| // Triangular -= Product |
| template <typename DstXprType, typename Lhs, typename Rhs, typename Scalar> |
| struct Assignment<DstXprType, Product<Lhs, Rhs, DefaultProduct>, |
| internal::sub_assign_op<Scalar, typename Product<Lhs, Rhs, DefaultProduct>::Scalar>, |
| Dense2Triangular> { |
| typedef Product<Lhs, Rhs, DefaultProduct> SrcXprType; |
| static void run(DstXprType& dst, const SrcXprType& src, |
| const internal::sub_assign_op<Scalar, typename SrcXprType::Scalar>&) { |
| dst._assignProduct(src, Scalar(-1), true); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_TRIANGULARMATRIX_H |