| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "common.h" |
| |
| struct scalar_norm1_op { |
| typedef RealScalar result_type; |
| inline RealScalar operator()(const Scalar &a) const { return Eigen::numext::norm1(a); } |
| }; |
| namespace Eigen { |
| namespace internal { |
| template <> |
| struct functor_traits<scalar_norm1_op> { |
| enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 }; |
| }; |
| } // namespace internal |
| } // namespace Eigen |
| |
| // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum |
| // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n |
| extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(asum))(int *n, RealScalar *px, int *incx) { |
| // std::cerr << "__asum " << *n << " " << *incx << "\n"; |
| Complex *x = reinterpret_cast<Complex *>(px); |
| |
| if (*n <= 0) return 0; |
| |
| if (*incx == 1) |
| return make_vector(x, *n).unaryExpr<scalar_norm1_op>().sum(); |
| else |
| return make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum(); |
| } |
| |
| extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amax))(int *n, RealScalar *px, int *incx) { |
| if (*n <= 0) return 0; |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| |
| Eigen::DenseIndex ret; |
| if (*incx == 1) |
| make_vector(x, *n).unaryExpr<scalar_norm1_op>().maxCoeff(&ret); |
| else |
| make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().maxCoeff(&ret); |
| return int(ret) + 1; |
| } |
| |
| extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amin))(int *n, RealScalar *px, int *incx) { |
| if (*n <= 0) return 0; |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| |
| Eigen::DenseIndex ret; |
| if (*incx == 1) |
| make_vector(x, *n).unaryExpr<scalar_norm1_op>().minCoeff(&ret); |
| else |
| make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().minCoeff(&ret); |
| return int(ret) + 1; |
| } |
| |
| // computes a dot product of a conjugated vector with another vector. |
| EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) { |
| // std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n"; |
| Scalar *res = reinterpret_cast<Scalar *>(pres); |
| |
| if (*n <= 0) { |
| *res = Scalar(0); |
| return; |
| } |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| |
| if (*incx == 1 && *incy == 1) |
| *res = (make_vector(x, *n).dot(make_vector(y, *n))); |
| else if (*incx > 0 && *incy > 0) |
| *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, *incy))); |
| else if (*incx < 0 && *incy > 0) |
| *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, *incy))); |
| else if (*incx > 0 && *incy < 0) |
| *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, -*incy).reverse())); |
| else if (*incx < 0 && *incy < 0) |
| *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, -*incy).reverse())); |
| } |
| |
| // computes a vector-vector dot product without complex conjugation. |
| EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) { |
| Scalar *res = reinterpret_cast<Scalar *>(pres); |
| |
| if (*n <= 0) { |
| *res = Scalar(0); |
| return; |
| } |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| |
| if (*incx == 1 && *incy == 1) |
| *res = (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum(); |
| else if (*incx > 0 && *incy > 0) |
| *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum(); |
| else if (*incx < 0 && *incy > 0) |
| *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum(); |
| else if (*incx > 0 && *incy < 0) |
| *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); |
| else if (*incx < 0 && *incy < 0) |
| *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); |
| } |
| |
| extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(nrm2))(int *n, RealScalar *px, int *incx) { |
| // std::cerr << "__nrm2 " << *n << " " << *incx << "\n"; |
| if (*n <= 0) return 0; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| |
| if (*incx == 1) return make_vector(x, *n).stableNorm(); |
| |
| return make_vector(x, *n, *incx).stableNorm(); |
| } |
| |
| EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot)) |
| (int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) { |
| if (*n <= 0) return; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| RealScalar c = *pc; |
| RealScalar s = *ps; |
| |
| StridedVectorType vx(make_vector(x, *n, std::abs(*incx))); |
| StridedVectorType vy(make_vector(y, *n, std::abs(*incy))); |
| |
| Eigen::Reverse<StridedVectorType> rvx(vx); |
| Eigen::Reverse<StridedVectorType> rvy(vy); |
| |
| // TODO implement mixed real-scalar rotations |
| if (*incx < 0 && *incy > 0) |
| Eigen::internal::apply_rotation_in_the_plane(rvx, vy, Eigen::JacobiRotation<Scalar>(c, s)); |
| else if (*incx > 0 && *incy < 0) |
| Eigen::internal::apply_rotation_in_the_plane(vx, rvy, Eigen::JacobiRotation<Scalar>(c, s)); |
| else |
| Eigen::internal::apply_rotation_in_the_plane(vx, vy, Eigen::JacobiRotation<Scalar>(c, s)); |
| } |
| |
| EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx) { |
| if (*n <= 0) return; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| RealScalar alpha = *palpha; |
| |
| // std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n"; |
| |
| if (*incx == 1) |
| make_vector(x, *n) *= alpha; |
| else |
| make_vector(x, *n, std::abs(*incx)) *= alpha; |
| } |