blob: 3181a503830d0271b76487cd48c96d8e91f34b94 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
struct scalar_norm1_op {
typedef RealScalar result_type;
inline RealScalar operator()(const Scalar &a) const { return Eigen::numext::norm1(a); }
};
namespace Eigen {
namespace internal {
template <>
struct functor_traits<scalar_norm1_op> {
enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
};
} // namespace internal
} // namespace Eigen
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(asum))(int *n, RealScalar *px, int *incx) {
// std::cerr << "__asum " << *n << " " << *incx << "\n";
Complex *x = reinterpret_cast<Complex *>(px);
if (*n <= 0) return 0;
if (*incx == 1)
return make_vector(x, *n).unaryExpr<scalar_norm1_op>().sum();
else
return make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
}
extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amax))(int *n, RealScalar *px, int *incx) {
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
Eigen::DenseIndex ret;
if (*incx == 1)
make_vector(x, *n).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
else
make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
return int(ret) + 1;
}
extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amin))(int *n, RealScalar *px, int *incx) {
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
Eigen::DenseIndex ret;
if (*incx == 1)
make_vector(x, *n).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
else
make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
return int(ret) + 1;
}
// computes a dot product of a conjugated vector with another vector.
EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) {
// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
Scalar *res = reinterpret_cast<Scalar *>(pres);
if (*n <= 0) {
*res = Scalar(0);
return;
}
Scalar *x = reinterpret_cast<Scalar *>(px);
Scalar *y = reinterpret_cast<Scalar *>(py);
if (*incx == 1 && *incy == 1)
*res = (make_vector(x, *n).dot(make_vector(y, *n)));
else if (*incx > 0 && *incy > 0)
*res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, *incy)));
else if (*incx < 0 && *incy > 0)
*res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, *incy)));
else if (*incx > 0 && *incy < 0)
*res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, -*incy).reverse()));
else if (*incx < 0 && *incy < 0)
*res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, -*incy).reverse()));
}
// computes a vector-vector dot product without complex conjugation.
EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) {
Scalar *res = reinterpret_cast<Scalar *>(pres);
if (*n <= 0) {
*res = Scalar(0);
return;
}
Scalar *x = reinterpret_cast<Scalar *>(px);
Scalar *y = reinterpret_cast<Scalar *>(py);
if (*incx == 1 && *incy == 1)
*res = (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum();
else if (*incx > 0 && *incy > 0)
*res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum();
else if (*incx < 0 && *incy > 0)
*res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum();
else if (*incx > 0 && *incy < 0)
*res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
else if (*incx < 0 && *incy < 0)
*res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
}
extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(nrm2))(int *n, RealScalar *px, int *incx) {
// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
if (*incx == 1) return make_vector(x, *n).stableNorm();
return make_vector(x, *n, *incx).stableNorm();
}
EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot))
(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) {
if (*n <= 0) return;
Scalar *x = reinterpret_cast<Scalar *>(px);
Scalar *y = reinterpret_cast<Scalar *>(py);
RealScalar c = *pc;
RealScalar s = *ps;
StridedVectorType vx(make_vector(x, *n, std::abs(*incx)));
StridedVectorType vy(make_vector(y, *n, std::abs(*incy)));
Eigen::Reverse<StridedVectorType> rvx(vx);
Eigen::Reverse<StridedVectorType> rvy(vy);
// TODO implement mixed real-scalar rotations
if (*incx < 0 && *incy > 0)
Eigen::internal::apply_rotation_in_the_plane(rvx, vy, Eigen::JacobiRotation<Scalar>(c, s));
else if (*incx > 0 && *incy < 0)
Eigen::internal::apply_rotation_in_the_plane(vx, rvy, Eigen::JacobiRotation<Scalar>(c, s));
else
Eigen::internal::apply_rotation_in_the_plane(vx, vy, Eigen::JacobiRotation<Scalar>(c, s));
}
EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx) {
if (*n <= 0) return;
Scalar *x = reinterpret_cast<Scalar *>(px);
RealScalar alpha = *palpha;
// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
if (*incx == 1)
make_vector(x, *n) *= alpha;
else
make_vector(x, *n, std::abs(*incx)) *= alpha;
}