| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_LDLT_H |
| #define EIGEN_LDLT_H |
| |
| template<typename MatrixType, int UpLo> struct LDLT_Traits; |
| |
| /** \ingroup cholesky_Module |
| * |
| * \class LDLT |
| * |
| * \brief Robust Cholesky decomposition of a matrix with pivoting |
| * |
| * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition |
| * |
| * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite |
| * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L |
| * is lower triangular with a unit diagonal and D is a diagonal matrix. |
| * |
| * The decomposition uses pivoting to ensure stability, so that L will have |
| * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root |
| * on D also stabilizes the computation. |
| * |
| * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky |
| * decomposition to determine whether a system of equations has a solution. |
| * |
| * \sa MatrixBase::ldlt(), class LLT |
| */ |
| /* THIS PART OF THE DOX IS CURRENTLY DISABLED BECAUSE INACCURATE BECAUSE OF BUG IN THE DECOMPOSITION CODE |
| * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, |
| * the strict lower part does not have to store correct values. |
| */ |
| template<typename _MatrixType, int _UpLo> class LDLT |
| { |
| public: |
| typedef _MatrixType MatrixType; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| UpLo = _UpLo |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef typename MatrixType::Index Index; |
| typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; |
| |
| typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
| typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
| |
| typedef LDLT_Traits<MatrixType,UpLo> Traits; |
| |
| /** \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via LDLT::compute(const MatrixType&). |
| */ |
| LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa LDLT() |
| */ |
| LDLT(Index size) |
| : m_matrix(size, size), |
| m_transpositions(size), |
| m_temporary(size), |
| m_isInitialized(false) |
| {} |
| |
| LDLT(const MatrixType& matrix) |
| : m_matrix(matrix.rows(), matrix.cols()), |
| m_transpositions(matrix.rows()), |
| m_temporary(matrix.rows()), |
| m_isInitialized(false) |
| { |
| compute(matrix); |
| } |
| |
| /** \returns a view of the upper triangular matrix U */ |
| inline typename Traits::MatrixU matrixU() const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| return Traits::getU(m_matrix); |
| } |
| |
| /** \returns a view of the lower triangular matrix L */ |
| inline typename Traits::MatrixL matrixL() const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| return Traits::getL(m_matrix); |
| } |
| |
| /** \returns the permutation matrix P as a transposition sequence. |
| */ |
| inline const TranspositionType& transpositionsP() const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_transpositions; |
| } |
| |
| /** \returns the coefficients of the diagonal matrix D */ |
| inline Diagonal<MatrixType,0> vectorD(void) const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_matrix.diagonal(); |
| } |
| |
| /** \returns true if the matrix is positive (semidefinite) */ |
| inline bool isPositive(void) const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_sign == 1; |
| } |
| |
| /** \returns true if the matrix is negative (semidefinite) */ |
| inline bool isNegative(void) const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_sign == -1; |
| } |
| |
| /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. |
| * |
| * \note_about_checking_solutions |
| * |
| * \sa solveInPlace(), MatrixBase::ldlt() |
| */ |
| template<typename Rhs> |
| inline const ei_solve_retval<LDLT, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| ei_assert(m_matrix.rows()==b.rows() |
| && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); |
| return ei_solve_retval<LDLT, Rhs>(*this, b.derived()); |
| } |
| |
| template<typename Derived> |
| bool solveInPlace(MatrixBase<Derived> &bAndX) const; |
| |
| LDLT& compute(const MatrixType& matrix); |
| |
| /** \returns the internal LDLT decomposition matrix |
| * |
| * TODO: document the storage layout |
| */ |
| inline const MatrixType& matrixLDLT() const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_matrix; |
| } |
| |
| MatrixType reconstructedMatrix() const; |
| |
| inline Index rows() const { return m_matrix.rows(); } |
| inline Index cols() const { return m_matrix.cols(); } |
| |
| protected: |
| |
| /** \internal |
| * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. |
| * The strict upper part is used during the decomposition, the strict lower |
| * part correspond to the coefficients of L (its diagonal is equal to 1 and |
| * is not stored), and the diagonal entries correspond to D. |
| */ |
| MatrixType m_matrix; |
| TranspositionType m_transpositions; |
| TmpMatrixType m_temporary; |
| int m_sign; |
| bool m_isInitialized; |
| }; |
| |
| template<int UpLo> struct ei_ldlt_inplace; |
| |
| template<> struct ei_ldlt_inplace<Lower> |
| { |
| template<typename MatrixType, typename TranspositionType, typename Workspace> |
| static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| ei_assert(mat.rows()==mat.cols()); |
| const Index size = mat.rows(); |
| |
| if (size <= 1) |
| { |
| transpositions.setIdentity(); |
| if(sign) |
| *sign = ei_real(mat.coeff(0,0))>0 ? 1:-1; |
| return true; |
| } |
| |
| RealScalar cutoff = 0, biggest_in_corner; |
| |
| for (Index k = 0; k < size; ++k) |
| { |
| // Find largest diagonal element |
| Index index_of_biggest_in_corner; |
| biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); |
| index_of_biggest_in_corner += k; |
| |
| if(k == 0) |
| { |
| // The biggest overall is the point of reference to which further diagonals |
| // are compared; if any diagonal is negligible compared |
| // to the largest overall, the algorithm bails. |
| cutoff = ei_abs(NumTraits<Scalar>::epsilon() * biggest_in_corner); |
| |
| if(sign) |
| *sign = ei_real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1; |
| } |
| |
| // Finish early if the matrix is not full rank. |
| if(biggest_in_corner < cutoff) |
| { |
| for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i; |
| break; |
| } |
| |
| transpositions.coeffRef(k) = index_of_biggest_in_corner; |
| if(k != index_of_biggest_in_corner) |
| { |
| // apply the transposition while taking care to consider only |
| // the lower triangular part |
| Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element |
| mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); |
| mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); |
| std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); |
| for(int i=k+1;i<index_of_biggest_in_corner;++i) |
| { |
| Scalar tmp = mat.coeffRef(i,k); |
| mat.coeffRef(i,k) = ei_conj(mat.coeffRef(index_of_biggest_in_corner,i)); |
| mat.coeffRef(index_of_biggest_in_corner,i) = ei_conj(tmp); |
| } |
| if(NumTraits<Scalar>::IsComplex) |
| mat.coeffRef(index_of_biggest_in_corner,k) = ei_conj(mat.coeff(index_of_biggest_in_corner,k)); |
| } |
| |
| // partition the matrix: |
| // A00 | - | - |
| // lu = A10 | A11 | - |
| // A20 | A21 | A22 |
| Index rs = size - k - 1; |
| Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
| Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
| Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
| |
| if(k>0) |
| { |
| temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint(); |
| mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); |
| if(rs>0) |
| A21.noalias() -= A20 * temp.head(k); |
| } |
| if((rs>0) && (ei_abs(mat.coeffRef(k,k)) > cutoff)) |
| A21 /= mat.coeffRef(k,k); |
| } |
| |
| return true; |
| } |
| }; |
| |
| template<> struct ei_ldlt_inplace<Upper> |
| { |
| template<typename MatrixType, typename TranspositionType, typename Workspace> |
| static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) |
| { |
| Transpose<MatrixType> matt(mat); |
| return ei_ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); |
| } |
| }; |
| |
| template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> |
| { |
| typedef TriangularView<MatrixType, UnitLower> MatrixL; |
| typedef TriangularView<typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; |
| inline static MatrixL getL(const MatrixType& m) { return m; } |
| inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
| }; |
| |
| template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> |
| { |
| typedef TriangularView<typename MatrixType::AdjointReturnType, UnitLower> MatrixL; |
| typedef TriangularView<MatrixType, UnitUpper> MatrixU; |
| inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); } |
| inline static MatrixU getU(const MatrixType& m) { return m; } |
| }; |
| |
| /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix |
| */ |
| template<typename MatrixType, int _UpLo> |
| LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a) |
| { |
| ei_assert(a.rows()==a.cols()); |
| const Index size = a.rows(); |
| |
| m_matrix = a; |
| |
| m_transpositions.resize(size); |
| m_isInitialized = false; |
| m_temporary.resize(size); |
| |
| ei_ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign); |
| |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| template<typename _MatrixType, int _UpLo, typename Rhs> |
| struct ei_solve_retval<LDLT<_MatrixType,_UpLo>, Rhs> |
| : ei_solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs> |
| { |
| typedef LDLT<_MatrixType,_UpLo> LDLTType; |
| EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| ei_assert(rhs().rows() == dec().matrixLDLT().rows()); |
| // dst = P b |
| dst = dec().transpositionsP() * rhs(); |
| |
| // dst = L^-1 (P b) |
| dec().matrixL().solveInPlace(dst); |
| |
| // dst = D^-1 (L^-1 P b) |
| dst = dec().vectorD().asDiagonal().inverse() * dst; |
| |
| // dst = L^-T (D^-1 L^-1 P b) |
| dec().matrixU().solveInPlace(dst); |
| |
| // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b |
| dst = dec().transpositionsP().transpose() * dst; |
| } |
| }; |
| |
| /** This is the \em in-place version of solve(). |
| * |
| * \param bAndX represents both the right-hand side matrix b and result x. |
| * |
| * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
| * |
| * This version avoids a copy when the right hand side matrix b is not |
| * needed anymore. |
| * |
| * \sa LDLT::solve(), MatrixBase::ldlt() |
| */ |
| template<typename MatrixType,int _UpLo> |
| template<typename Derived> |
| bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| const Index size = m_matrix.rows(); |
| ei_assert(size == bAndX.rows()); |
| |
| bAndX = this->solve(bAndX); |
| |
| return true; |
| } |
| |
| /** \returns the matrix represented by the decomposition, |
| * i.e., it returns the product: P^T L D L^* P. |
| * This function is provided for debug purpose. */ |
| template<typename MatrixType, int _UpLo> |
| MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const |
| { |
| ei_assert(m_isInitialized && "LDLT is not initialized."); |
| const Index size = m_matrix.rows(); |
| MatrixType res(size,size); |
| |
| // P |
| res.setIdentity(); |
| res = transpositionsP() * res; |
| // L^* P |
| res = matrixU() * res; |
| // D(L^*P) |
| res = vectorD().asDiagonal() * res; |
| // L(DL^*P) |
| res = matrixL() * res; |
| // P^T (LDL^*P) |
| res = transpositionsP().transpose() * res; |
| |
| return res; |
| } |
| |
| /** \cholesky_module |
| * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
| */ |
| template<typename MatrixType, unsigned int UpLo> |
| inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
| SelfAdjointView<MatrixType, UpLo>::ldlt() const |
| { |
| return LDLT<PlainObject,UpLo>(m_matrix); |
| } |
| |
| /** \cholesky_module |
| * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
| */ |
| template<typename Derived> |
| inline const LDLT<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::ldlt() const |
| { |
| return LDLT<PlainObject>(derived()); |
| } |
| |
| #endif // EIGEN_LDLT_H |