|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H | 
|  | #define EIGEN_SELFADJOINTEIGENSOLVER_H | 
|  |  | 
|  | #include "./EigenvaluesCommon.h" | 
|  | #include "./Tridiagonalization.h" | 
|  |  | 
|  | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * \nonstableyet | 
|  | * | 
|  | * \class SelfAdjointEigenSolver | 
|  | * | 
|  | * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices | 
|  | * | 
|  | * \tparam _MatrixType the type of the matrix of which we are computing the | 
|  | * eigendecomposition; this is expected to be an instantiation of the Matrix | 
|  | * class template. | 
|  | * | 
|  | * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real | 
|  | * matrices, this means that the matrix is symmetric: it equals its | 
|  | * transpose. This class computes the eigenvalues and eigenvectors of a | 
|  | * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors | 
|  | * \f$ v \f$ such that \f$ Av = \lambda v \f$.  The eigenvalues of a | 
|  | * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with | 
|  | * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the | 
|  | * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint | 
|  | * matrices, the matrix \f$ V \f$ is always invertible). This is called the | 
|  | * eigendecomposition. | 
|  | * | 
|  | * The algorithm exploits the fact that the matrix is selfadjoint, making it | 
|  | * faster and more accurate than the general purpose eigenvalue algorithms | 
|  | * implemented in EigenSolver and ComplexEigenSolver. | 
|  | * | 
|  | * Only the \b lower \b triangular \b part of the input matrix is referenced. | 
|  | * | 
|  | * Call the function compute() to compute the eigenvalues and eigenvectors of | 
|  | * a given matrix. Alternatively, you can use the | 
|  | * SelfAdjointEigenSolver(const MatrixType&, bool) constructor which computes | 
|  | * the eigenvalues and eigenvectors at construction time. Once the eigenvalue | 
|  | * and eigenvectors are computed, they can be retrieved with the eigenvalues() | 
|  | * and eigenvectors() functions. | 
|  | * | 
|  | * The documentation for SelfAdjointEigenSolver(const MatrixType&, bool) | 
|  | * contains an example of the typical use of this class. | 
|  | * | 
|  | * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and | 
|  | * the likes, see the class GeneralizedSelfAdjointEigenSolver. | 
|  | * | 
|  | * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver | 
|  | */ | 
|  | template<typename _MatrixType> class SelfAdjointEigenSolver | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | Size = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | /** \brief Scalar type for matrices of type \p _MatrixType. */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::Index Index; | 
|  |  | 
|  | /** \brief Real scalar type for \p _MatrixType. | 
|  | * | 
|  | * This is just \c Scalar if #Scalar is real (e.g., \c float or | 
|  | * \c double), and the type of the real part of \c Scalar if #Scalar is | 
|  | * complex. | 
|  | */ | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | /** \brief Type for vector of eigenvalues as returned by eigenvalues(). | 
|  | * | 
|  | * This is a column vector with entries of type #RealScalar. | 
|  | * The length of the vector is the size of \p _MatrixType. | 
|  | */ | 
|  | typedef typename ei_plain_col_type<MatrixType, RealScalar>::type RealVectorType; | 
|  | typedef Tridiagonalization<MatrixType> TridiagonalizationType; | 
|  |  | 
|  | /** \brief Default constructor for fixed-size matrices. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via compute(const MatrixType&, bool) or | 
|  | * compute(const MatrixType&, const MatrixType&, bool). This constructor | 
|  | * can only be used if \p _MatrixType is a fixed-size matrix; use | 
|  | * SelfAdjointEigenSolver(Index) for dynamic-size matrices. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out | 
|  | */ | 
|  | SelfAdjointEigenSolver() | 
|  | : m_eivec(), | 
|  | m_eivalues(), | 
|  | m_subdiag(), | 
|  | m_isInitialized(false) | 
|  | { } | 
|  |  | 
|  | /** \brief Constructor, pre-allocates memory for dynamic-size matrices. | 
|  | * | 
|  | * \param [in]  size  Positive integer, size of the matrix whose | 
|  | * eigenvalues and eigenvectors will be computed. | 
|  | * | 
|  | * This constructor is useful for dynamic-size matrices, when the user | 
|  | * intends to perform decompositions via compute(const MatrixType&, bool) | 
|  | * or compute(const MatrixType&, const MatrixType&, bool). The \p size | 
|  | * parameter is only used as a hint. It is not an error to give a wrong | 
|  | * \p size, but it may impair performance. | 
|  | * | 
|  | * \sa compute(const MatrixType&, bool) for an example | 
|  | */ | 
|  | SelfAdjointEigenSolver(Index size) | 
|  | : m_eivec(size, size), | 
|  | m_eivalues(size), | 
|  | m_subdiag(size > 1 ? size - 1 : 1), | 
|  | m_isInitialized(false) | 
|  | {} | 
|  |  | 
|  | /** \brief Constructor; computes eigendecomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to | 
|  | *    be computed. Only the lower triangular part of the matrix is referenced. | 
|  | * \param[in]  options Can be ComputeEigenvectors (default) or EigenvaluesOnly. | 
|  | * | 
|  | * This constructor calls compute(const MatrixType&, bool) to compute the | 
|  | * eigenvalues of the matrix \p matrix. The eigenvectors are computed if | 
|  | * \p options equals ComputeEigenvectors. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out | 
|  | * | 
|  | * \sa compute(const MatrixType&, bool), | 
|  | *     SelfAdjointEigenSolver(const MatrixType&, const MatrixType&, bool) | 
|  | */ | 
|  | SelfAdjointEigenSolver(const MatrixType& matrix, int options = ComputeEigenvectors) | 
|  | : m_eivec(matrix.rows(), matrix.cols()), | 
|  | m_eivalues(matrix.cols()), | 
|  | m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix, options); | 
|  | } | 
|  |  | 
|  | /** \brief Computes eigendecomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to | 
|  | *    be computed. Only the lower triangular part of the matrix is referenced. | 
|  | * \param[in]  options Can be ComputeEigenvectors (default) or EigenvaluesOnly. | 
|  | * \returns    Reference to \c *this | 
|  | * | 
|  | * This function computes the eigenvalues of \p matrix.  The eigenvalues() | 
|  | * function can be used to retrieve them.  If \p options equals ComputeEigenvectors, | 
|  | * then the eigenvectors are also computed and can be retrieved by | 
|  | * calling eigenvectors(). | 
|  | * | 
|  | * This implementation uses a symmetric QR algorithm. The matrix is first | 
|  | * reduced to tridiagonal form using the Tridiagonalization class. The | 
|  | * tridiagonal matrix is then brought to diagonal form with implicit | 
|  | * symmetric QR steps with Wilkinson shift. Details can be found in | 
|  | * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>. | 
|  | * | 
|  | * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors | 
|  | * are required and \f$ 4n^3/3 \f$ if they are not required. | 
|  | * | 
|  | * This method reuses the memory in the SelfAdjointEigenSolver object that | 
|  | * was allocated when the object was constructed, if the size of the | 
|  | * matrix does not change. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out | 
|  | * | 
|  | * \sa SelfAdjointEigenSolver(const MatrixType&, bool) | 
|  | */ | 
|  | SelfAdjointEigenSolver& compute(const MatrixType& matrix, int options = ComputeEigenvectors); | 
|  |  | 
|  | /** \brief Returns the eigenvectors of given matrix (pencil). | 
|  | * | 
|  | * \returns  A const reference to the matrix whose columns are the eigenvectors. | 
|  | * | 
|  | * \pre The eigenvectors have been computed before. | 
|  | * | 
|  | * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding | 
|  | * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The | 
|  | * eigenvectors are normalized to have (Euclidean) norm equal to one. If | 
|  | * this object was used to solve the eigenproblem for the selfadjoint | 
|  | * matrix \f$ A \f$, then the matrix returned by this function is the | 
|  | * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out | 
|  | * | 
|  | * \sa eigenvalues() | 
|  | */ | 
|  | const MatrixType& eigenvectors() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | ei_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the eigenvalues of given matrix (pencil). | 
|  | * | 
|  | * \returns A const reference to the column vector containing the eigenvalues. | 
|  | * | 
|  | * \pre The eigenvalues have been computed before. | 
|  | * | 
|  | * The eigenvalues are repeated according to their algebraic multiplicity, | 
|  | * so there are as many eigenvalues as rows in the matrix. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out | 
|  | * | 
|  | * \sa eigenvectors(), MatrixBase::eigenvalues() | 
|  | */ | 
|  | const RealVectorType& eigenvalues() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | return m_eivalues; | 
|  | } | 
|  |  | 
|  | /** \brief Computes the positive-definite square root of the matrix. | 
|  | * | 
|  | * \returns the positive-definite square root of the matrix | 
|  | * | 
|  | * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
|  | * have been computed before. | 
|  | * | 
|  | * The square root of a positive-definite matrix \f$ A \f$ is the | 
|  | * positive-definite matrix whose square equals \f$ A \f$. This function | 
|  | * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the | 
|  | * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out | 
|  | * | 
|  | * \sa operatorInverseSqrt(), | 
|  | *     \ref MatrixFunctions_Module "MatrixFunctions Module" | 
|  | */ | 
|  | MatrixType operatorSqrt() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | ei_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
|  | } | 
|  |  | 
|  | /** \brief Computes the inverse square root of the matrix. | 
|  | * | 
|  | * \returns the inverse positive-definite square root of the matrix | 
|  | * | 
|  | * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
|  | * have been computed before. | 
|  | * | 
|  | * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to | 
|  | * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is | 
|  | * cheaper than first computing the square root with operatorSqrt() and | 
|  | * then its inverse with MatrixBase::inverse(). | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out | 
|  | * | 
|  | * \sa operatorSqrt(), MatrixBase::inverse(), | 
|  | *     \ref MatrixFunctions_Module "MatrixFunctions Module" | 
|  | */ | 
|  | MatrixType operatorInverseSqrt() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | ei_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
|  | } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was succesful, \c NoConvergence otherwise. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** \brief Maximum number of iterations. | 
|  | * | 
|  | * Maximum number of iterations allowed for an eigenvalue to converge. | 
|  | */ | 
|  | static const int m_maxIterations = 30; | 
|  |  | 
|  | protected: | 
|  | MatrixType m_eivec; | 
|  | RealVectorType m_eivalues; | 
|  | typename TridiagonalizationType::SubDiagonalType m_subdiag; | 
|  | ComputationInfo m_info; | 
|  | bool m_isInitialized; | 
|  | bool m_eigenvectorsOk; | 
|  | }; | 
|  |  | 
|  | /** \internal | 
|  | * | 
|  | * \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * Performs a QR step on a tridiagonal symmetric matrix represented as a | 
|  | * pair of two vectors \a diag and \a subdiag. | 
|  | * | 
|  | * \param matA the input selfadjoint matrix | 
|  | * \param hCoeffs returned Householder coefficients | 
|  | * | 
|  | * For compilation efficiency reasons, this procedure does not use eigen expression | 
|  | * for its arguments. | 
|  | * | 
|  | * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: | 
|  | * "implicit symmetric QR step with Wilkinson shift" | 
|  | */ | 
|  | template<typename RealScalar, typename Scalar, typename Index> | 
|  | static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n); | 
|  |  | 
|  | template<typename MatrixType> | 
|  | SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> | 
|  | ::compute(const MatrixType& matrix, int options) | 
|  | { | 
|  | ei_assert(matrix.cols() == matrix.rows()); | 
|  | ei_assert((options&~(EigVecMask|GenEigMask))==0 | 
|  | && (options&EigVecMask)!=EigVecMask | 
|  | && "invalid option parameter"); | 
|  | bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; | 
|  | Index n = matrix.cols(); | 
|  | m_eivalues.resize(n,1); | 
|  |  | 
|  | if(n==1) | 
|  | { | 
|  | m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0)); | 
|  | if(computeEigenvectors) | 
|  | m_eivec.setOnes(); | 
|  | m_info = Success; | 
|  | m_isInitialized = true; | 
|  | m_eigenvectorsOk = computeEigenvectors; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // declare some aliases | 
|  | RealVectorType& diag = m_eivalues; | 
|  | MatrixType& mat = m_eivec; | 
|  |  | 
|  | mat = matrix; | 
|  | m_subdiag.resize(n-1); | 
|  | ei_tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors); | 
|  |  | 
|  | Index end = n-1; | 
|  | Index start = 0; | 
|  | Index iter = 0; // number of iterations we are working on one element | 
|  |  | 
|  | while (end>0) | 
|  | { | 
|  | for (Index i = start; i<end; ++i) | 
|  | if (ei_isMuchSmallerThan(ei_abs(m_subdiag[i]),(ei_abs(diag[i])+ei_abs(diag[i+1])))) | 
|  | m_subdiag[i] = 0; | 
|  |  | 
|  | // find the largest unreduced block | 
|  | while (end>0 && m_subdiag[end-1]==0) | 
|  | { | 
|  | iter = 0; | 
|  | end--; | 
|  | } | 
|  | if (end<=0) | 
|  | break; | 
|  |  | 
|  | // if we spent too many iterations on the current element, we give up | 
|  | iter++; | 
|  | if(iter > m_maxIterations) break; | 
|  |  | 
|  | start = end - 1; | 
|  | while (start>0 && m_subdiag[start-1]!=0) | 
|  | start--; | 
|  |  | 
|  | ei_tridiagonal_qr_step(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n); | 
|  | } | 
|  |  | 
|  | if (iter <= m_maxIterations) | 
|  | m_info = Success; | 
|  | else | 
|  | m_info = NoConvergence; | 
|  |  | 
|  | // Sort eigenvalues and corresponding vectors. | 
|  | // TODO make the sort optional ? | 
|  | // TODO use a better sort algorithm !! | 
|  | if (m_info == Success) | 
|  | { | 
|  | for (Index i = 0; i < n-1; ++i) | 
|  | { | 
|  | Index k; | 
|  | m_eivalues.segment(i,n-i).minCoeff(&k); | 
|  | if (k > 0) | 
|  | { | 
|  | std::swap(m_eivalues[i], m_eivalues[k+i]); | 
|  | if(computeEigenvectors) | 
|  | m_eivec.col(i).swap(m_eivec.col(k+i)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | m_isInitialized = true; | 
|  | m_eigenvectorsOk = computeEigenvectors; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename RealScalar, typename Scalar, typename Index> | 
|  | static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n) | 
|  | { | 
|  | RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); | 
|  | RealScalar e2 = ei_abs2(subdiag[end-1]); | 
|  | RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2)); | 
|  | RealScalar x = diag[start] - mu; | 
|  | RealScalar z = subdiag[start]; | 
|  |  | 
|  | for (Index k = start; k < end; ++k) | 
|  | { | 
|  | PlanarRotation<RealScalar> rot; | 
|  | rot.makeGivens(x, z); | 
|  |  | 
|  | // do T = G' T G | 
|  | RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; | 
|  | RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; | 
|  |  | 
|  | diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); | 
|  | diag[k+1] = rot.s() * sdk + rot.c() * dkp1; | 
|  | subdiag[k] = rot.c() * sdk - rot.s() * dkp1; | 
|  |  | 
|  | if (k > start) | 
|  | subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; | 
|  |  | 
|  | x = subdiag[k]; | 
|  |  | 
|  | if (k < end - 1) | 
|  | { | 
|  | z = -rot.s() * subdiag[k+1]; | 
|  | subdiag[k + 1] = rot.c() * subdiag[k+1]; | 
|  | } | 
|  |  | 
|  | // apply the givens rotation to the unit matrix Q = Q * G | 
|  | if (matrixQ) | 
|  | { | 
|  | Map<Matrix<Scalar,Dynamic,Dynamic> > q(matrixQ,n,n); | 
|  | q.applyOnTheRight(k,k+1,rot); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_SELFADJOINTEIGENSOLVER_H |