|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_EULERANGLES_H | 
|  | #define EIGEN_EULERANGLES_H | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * \nonstableyet | 
|  | * | 
|  | * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) | 
|  | * | 
|  | * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. | 
|  | * For instance, in: | 
|  | * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode | 
|  | * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that | 
|  | * we have the following equality: | 
|  | * \code | 
|  | * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) | 
|  | *      * AngleAxisf(ea[1], Vector3f::UnitX()) | 
|  | *      * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode | 
|  | * This corresponds to the right-multiply conventions (with right hand side frames). | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline Matrix<typename MatrixBase<Derived>::Scalar,3,1> | 
|  | MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const | 
|  | { | 
|  | /* Implemented from Graphics Gems IV */ | 
|  | EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) | 
|  |  | 
|  | Matrix<Scalar,3,1> res; | 
|  | typedef Matrix<typename Derived::Scalar,2,1> Vector2; | 
|  | const Scalar epsilon = NumTraits<Scalar>::dummy_precision(); | 
|  |  | 
|  | const Index odd = ((a0+1)%3 == a1) ? 0 : 1; | 
|  | const Index i = a0; | 
|  | const Index j = (a0 + 1 + odd)%3; | 
|  | const Index k = (a0 + 2 - odd)%3; | 
|  |  | 
|  | if (a0==a2) | 
|  | { | 
|  | Scalar s = Vector2(coeff(j,i) , coeff(k,i)).norm(); | 
|  | res[1] = ei_atan2(s, coeff(i,i)); | 
|  | if (s > epsilon) | 
|  | { | 
|  | res[0] = ei_atan2(coeff(j,i), coeff(k,i)); | 
|  | res[2] = ei_atan2(coeff(i,j),-coeff(i,k)); | 
|  | } | 
|  | else | 
|  | { | 
|  | res[0] = Scalar(0); | 
|  | res[2] = (coeff(i,i)>0?1:-1)*ei_atan2(-coeff(k,j), coeff(j,j)); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | Scalar c = Vector2(coeff(i,i) , coeff(i,j)).norm(); | 
|  | res[1] = ei_atan2(-coeff(i,k), c); | 
|  | if (c > epsilon) | 
|  | { | 
|  | res[0] = ei_atan2(coeff(j,k), coeff(k,k)); | 
|  | res[2] = ei_atan2(coeff(i,j), coeff(i,i)); | 
|  | } | 
|  | else | 
|  | { | 
|  | res[0] = Scalar(0); | 
|  | res[2] = (coeff(i,k)>0?1:-1)*ei_atan2(-coeff(k,j), coeff(j,j)); | 
|  | } | 
|  | } | 
|  | if (!odd) | 
|  | res = -res; | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | #endif // EIGEN_EULERANGLES_H |