| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_TRANSLATION_H | 
 | #define EIGEN_TRANSLATION_H | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \class Translation | 
 |   * | 
 |   * \brief Represents a translation transformation | 
 |   * | 
 |   * \param _Scalar the scalar type, i.e., the type of the coefficients. | 
 |   * \param _Dim the  dimension of the space, can be a compile time value or Dynamic | 
 |   * | 
 |   * \note This class is not aimed to be used to store a translation transformation, | 
 |   * but rather to make easier the constructions and updates of Transform objects. | 
 |   * | 
 |   * \sa class Scaling, class Transform | 
 |   */ | 
 | template<typename _Scalar, int _Dim> | 
 | class Translation | 
 | { | 
 | public: | 
 |   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) | 
 |   /** dimension of the space */ | 
 |   enum { Dim = _Dim }; | 
 |   /** the scalar type of the coefficients */ | 
 |   typedef _Scalar Scalar; | 
 |   /** corresponding vector type */ | 
 |   typedef Matrix<Scalar,Dim,1> VectorType; | 
 |   /** corresponding linear transformation matrix type */ | 
 |   typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; | 
 |   /** corresponding affine transformation type */ | 
 |   typedef Transform<Scalar,Dim> AffineTransformType; | 
 |  | 
 | protected: | 
 |  | 
 |   VectorType m_coeffs; | 
 |  | 
 | public: | 
 |  | 
 |   /** Default constructor without initialization. */ | 
 |   Translation() {} | 
 |   /**  */ | 
 |   inline Translation(const Scalar& sx, const Scalar& sy) | 
 |   { | 
 |     ei_assert(Dim==2); | 
 |     m_coeffs.x() = sx; | 
 |     m_coeffs.y() = sy; | 
 |   } | 
 |   /**  */ | 
 |   inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz) | 
 |   { | 
 |     ei_assert(Dim==3); | 
 |     m_coeffs.x() = sx; | 
 |     m_coeffs.y() = sy; | 
 |     m_coeffs.z() = sz; | 
 |   } | 
 |   /** Constructs and initialize the translation transformation from a vector of translation coefficients */ | 
 |   explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {} | 
 |  | 
 |   /** \brief Retruns the x-translation by value. **/ | 
 |   inline Scalar x() const { return m_coeffs.x(); } | 
 |   /** \brief Retruns the y-translation by value. **/ | 
 |   inline Scalar y() const { return m_coeffs.y(); } | 
 |   /** \brief Retruns the z-translation by value. **/ | 
 |   inline Scalar z() const { return m_coeffs.z(); } | 
 |  | 
 |   /** \brief Retruns the x-translation as a reference. **/ | 
 |   inline Scalar& x() { return m_coeffs.x(); } | 
 |   /** \brief Retruns the y-translation as a reference. **/ | 
 |   inline Scalar& y() { return m_coeffs.y(); } | 
 |   /** \brief Retruns the z-translation as a reference. **/ | 
 |   inline Scalar& z() { return m_coeffs.z(); } | 
 |  | 
 |   const VectorType& vector() const { return m_coeffs; } | 
 |   VectorType& vector() { return m_coeffs; } | 
 |  | 
 |   /** Concatenates two translation */ | 
 |   inline Translation operator* (const Translation& other) const | 
 |   { return Translation(m_coeffs + other.m_coeffs); } | 
 |  | 
 |   /** Concatenates a translation and a uniform scaling */ | 
 |   inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const; | 
 |  | 
 |   /** Concatenates a translation and a linear transformation */ | 
 |   template<typename OtherDerived> | 
 |   inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const; | 
 |  | 
 |   /** Concatenates a translation and a rotation */ | 
 |   template<typename Derived> | 
 |   inline AffineTransformType operator*(const RotationBase<Derived,Dim>& r) const | 
 |   { return *this * r.toRotationMatrix(); } | 
 |  | 
 |   /** \returns the concatenation of a linear transformation \a l with the translation \a t */ | 
 |   // its a nightmare to define a templated friend function outside its declaration | 
 |   template<typename OtherDerived> friend | 
 |   inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t) | 
 |   { | 
 |     AffineTransformType res; | 
 |     res.matrix().setZero(); | 
 |     res.linear() = linear.derived(); | 
 |     res.translation() = linear.derived() * t.m_coeffs; | 
 |     res.matrix().row(Dim).setZero(); | 
 |     res(Dim,Dim) = Scalar(1); | 
 |     return res; | 
 |   } | 
 |  | 
 |   /** Concatenates a translation and an affine transformation */ | 
 |   template<int Mode> | 
 |   inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode>& t) const | 
 |   { | 
 |     Transform<Scalar,Dim,Mode> res = t; | 
 |     res.pretranslate(m_coeffs); | 
 |     return res; | 
 |   } | 
 |  | 
 |   /** Applies translation to vector */ | 
 |   inline VectorType operator* (const VectorType& other) const | 
 |   { return m_coeffs + other; } | 
 |  | 
 |   /** \returns the inverse translation (opposite) */ | 
 |   Translation inverse() const { return Translation(-m_coeffs); } | 
 |  | 
 |   Translation& operator=(const Translation& other) | 
 |   { | 
 |     m_coeffs = other.m_coeffs; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /** \returns \c *this with scalar type casted to \a NewScalarType | 
 |     * | 
 |     * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
 |     * then this function smartly returns a const reference to \c *this. | 
 |     */ | 
 |   template<typename NewScalarType> | 
 |   inline typename ei_cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const | 
 |   { return typename ei_cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); } | 
 |  | 
 |   /** Copy constructor with scalar type conversion */ | 
 |   template<typename OtherScalarType> | 
 |   inline explicit Translation(const Translation<OtherScalarType,Dim>& other) | 
 |   { m_coeffs = other.vector().template cast<Scalar>(); } | 
 |  | 
 |   /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
 |     * determined by \a prec. | 
 |     * | 
 |     * \sa MatrixBase::isApprox() */ | 
 |   bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const | 
 |   { return m_coeffs.isApprox(other.m_coeffs, prec); } | 
 |  | 
 | }; | 
 |  | 
 | /** \addtogroup Geometry_Module */ | 
 | //@{ | 
 | typedef Translation<float, 2> Translation2f; | 
 | typedef Translation<double,2> Translation2d; | 
 | typedef Translation<float, 3> Translation3f; | 
 | typedef Translation<double,3> Translation3d; | 
 | //@} | 
 |  | 
 | template<typename Scalar, int Dim> | 
 | inline typename Translation<Scalar,Dim>::AffineTransformType | 
 | Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const | 
 | { | 
 |   AffineTransformType res; | 
 |   res.matrix().setZero(); | 
 |   res.linear().diagonal().fill(other.factor()); | 
 |   res.translation() = m_coeffs; | 
 |   res(Dim,Dim) = Scalar(1); | 
 |   return res; | 
 | } | 
 |  | 
 | template<typename Scalar, int Dim> | 
 | template<typename OtherDerived> | 
 | inline typename Translation<Scalar,Dim>::AffineTransformType | 
 | Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const | 
 | { | 
 |   AffineTransformType res; | 
 |   res.matrix().setZero(); | 
 |   res.linear() = linear.derived(); | 
 |   res.translation() = m_coeffs; | 
 |   res.matrix().row(Dim).setZero(); | 
 |   res(Dim,Dim) = Scalar(1); | 
 |   return res; | 
 | } | 
 |  | 
 | #endif // EIGEN_TRANSLATION_H |