|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_JACOBI_H | 
|  | #define EIGEN_JACOBI_H | 
|  |  | 
|  | /** \ingroup Jacobi_Module | 
|  | * \jacobi_module | 
|  | * \class PlanarRotation | 
|  | * \brief Represents a rotation in the plane from a cosine-sine pair. | 
|  | * | 
|  | * This class represents a Jacobi or Givens rotation. | 
|  | * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by | 
|  | * its cosine \c c and sine \c s as follow: | 
|  | * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s  & \overline c \end{array} \right ) \f$ | 
|  | * | 
|  | * You can apply the respective counter-clockwise rotation to a column vector \c v by | 
|  | * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: | 
|  | * \code | 
|  | * v.applyOnTheLeft(J.adjoint()); | 
|  | * \endcode | 
|  | * | 
|  | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|  | */ | 
|  | template<typename Scalar> class PlanarRotation | 
|  | { | 
|  | public: | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | /** Default constructor without any initialization. */ | 
|  | PlanarRotation() {} | 
|  |  | 
|  | /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ | 
|  | PlanarRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} | 
|  |  | 
|  | Scalar& c() { return m_c; } | 
|  | Scalar c() const { return m_c; } | 
|  | Scalar& s() { return m_s; } | 
|  | Scalar s() const { return m_s; } | 
|  |  | 
|  | /** Concatenates two planar rotation */ | 
|  | PlanarRotation operator*(const PlanarRotation& other) | 
|  | { | 
|  | return PlanarRotation(m_c * other.m_c - ei_conj(m_s) * other.m_s, | 
|  | ei_conj(m_c * ei_conj(other.m_s) + ei_conj(m_s) * ei_conj(other.m_c))); | 
|  | } | 
|  |  | 
|  | /** Returns the transposed transformation */ | 
|  | PlanarRotation transpose() const { return PlanarRotation(m_c, -ei_conj(m_s)); } | 
|  |  | 
|  | /** Returns the adjoint transformation */ | 
|  | PlanarRotation adjoint() const { return PlanarRotation(ei_conj(m_c), -m_s); } | 
|  |  | 
|  | template<typename Derived> | 
|  | bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q); | 
|  | bool makeJacobi(RealScalar x, Scalar y, RealScalar z); | 
|  |  | 
|  | void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0); | 
|  |  | 
|  | protected: | 
|  | void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, ei_meta_true); | 
|  | void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, ei_meta_false); | 
|  |  | 
|  | Scalar m_c, m_s; | 
|  | }; | 
|  |  | 
|  | /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix | 
|  | * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ | 
|  | * | 
|  | * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|  | */ | 
|  | template<typename Scalar> | 
|  | bool PlanarRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z) | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | if(y == Scalar(0)) | 
|  | { | 
|  | m_c = Scalar(1); | 
|  | m_s = Scalar(0); | 
|  | return false; | 
|  | } | 
|  | else | 
|  | { | 
|  | RealScalar tau = (x-z)/(RealScalar(2)*ei_abs(y)); | 
|  | RealScalar w = ei_sqrt(ei_abs2(tau) + 1); | 
|  | RealScalar t; | 
|  | if(tau>0) | 
|  | { | 
|  | t = RealScalar(1) / (tau + w); | 
|  | } | 
|  | else | 
|  | { | 
|  | t = RealScalar(1) / (tau - w); | 
|  | } | 
|  | RealScalar sign_t = t > 0 ? 1 : -1; | 
|  | RealScalar n = RealScalar(1) / ei_sqrt(ei_abs2(t)+1); | 
|  | m_s = - sign_t * (ei_conj(y) / ei_abs(y)) * ei_abs(t) * n; | 
|  | m_c = n; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix | 
|  | * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields | 
|  | * a diagonal matrix \f$ A = J^* B J \f$ | 
|  | * | 
|  | * Example: \include Jacobi_makeJacobi.cpp | 
|  | * Output: \verbinclude Jacobi_makeJacobi.out | 
|  | * | 
|  | * \sa PlanarRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|  | */ | 
|  | template<typename Scalar> | 
|  | template<typename Derived> | 
|  | inline bool PlanarRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q) | 
|  | { | 
|  | return makeJacobi(ei_real(m.coeff(p,p)), m.coeff(p,q), ei_real(m.coeff(q,q))); | 
|  | } | 
|  |  | 
|  | /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector | 
|  | * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: | 
|  | * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. | 
|  | * | 
|  | * The value of \a z is returned if \a z is not null (the default is null). | 
|  | * Also note that G is built such that the cosine is always real. | 
|  | * | 
|  | * Example: \include Jacobi_makeGivens.cpp | 
|  | * Output: \verbinclude Jacobi_makeGivens.out | 
|  | * | 
|  | * This function implements the continuous Givens rotation generation algorithm | 
|  | * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. | 
|  | * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. | 
|  | * | 
|  | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|  | */ | 
|  | template<typename Scalar> | 
|  | void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z) | 
|  | { | 
|  | makeGivens(p, q, z, typename ei_meta_if<NumTraits<Scalar>::IsComplex, ei_meta_true, ei_meta_false>::ret()); | 
|  | } | 
|  |  | 
|  |  | 
|  | // specialization for complexes | 
|  | template<typename Scalar> | 
|  | void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, ei_meta_true) | 
|  | { | 
|  | if(q==Scalar(0)) | 
|  | { | 
|  | m_c = ei_real(p)<0 ? Scalar(-1) : Scalar(1); | 
|  | m_s = 0; | 
|  | if(r) *r = m_c * p; | 
|  | } | 
|  | else if(p==Scalar(0)) | 
|  | { | 
|  | m_c = 0; | 
|  | m_s = -q/ei_abs(q); | 
|  | if(r) *r = ei_abs(q); | 
|  | } | 
|  | else | 
|  | { | 
|  | RealScalar p1 = ei_norm1(p); | 
|  | RealScalar q1 = ei_norm1(q); | 
|  | if(p1>=q1) | 
|  | { | 
|  | Scalar ps = p / p1; | 
|  | RealScalar p2 = ei_abs2(ps); | 
|  | Scalar qs = q / p1; | 
|  | RealScalar q2 = ei_abs2(qs); | 
|  |  | 
|  | RealScalar u = ei_sqrt(RealScalar(1) + q2/p2); | 
|  | if(ei_real(p)<RealScalar(0)) | 
|  | u = -u; | 
|  |  | 
|  | m_c = Scalar(1)/u; | 
|  | m_s = -qs*ei_conj(ps)*(m_c/p2); | 
|  | if(r) *r = p * u; | 
|  | } | 
|  | else | 
|  | { | 
|  | Scalar ps = p / q1; | 
|  | RealScalar p2 = ei_abs2(ps); | 
|  | Scalar qs = q / q1; | 
|  | RealScalar q2 = ei_abs2(qs); | 
|  |  | 
|  | RealScalar u = q1 * ei_sqrt(p2 + q2); | 
|  | if(ei_real(p)<RealScalar(0)) | 
|  | u = -u; | 
|  |  | 
|  | p1 = ei_abs(p); | 
|  | ps = p/p1; | 
|  | m_c = p1/u; | 
|  | m_s = -ei_conj(ps) * (q/u); | 
|  | if(r) *r = ps * u; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // specialization for reals | 
|  | template<typename Scalar> | 
|  | void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, ei_meta_false) | 
|  | { | 
|  |  | 
|  | if(q==0) | 
|  | { | 
|  | m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1); | 
|  | m_s = 0; | 
|  | if(r) *r = ei_abs(p); | 
|  | } | 
|  | else if(p==0) | 
|  | { | 
|  | m_c = 0; | 
|  | m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1); | 
|  | if(r) *r = ei_abs(q); | 
|  | } | 
|  | else if(ei_abs(p) > ei_abs(q)) | 
|  | { | 
|  | Scalar t = q/p; | 
|  | Scalar u = ei_sqrt(Scalar(1) + ei_abs2(t)); | 
|  | if(p<Scalar(0)) | 
|  | u = -u; | 
|  | m_c = Scalar(1)/u; | 
|  | m_s = -t * m_c; | 
|  | if(r) *r = p * u; | 
|  | } | 
|  | else | 
|  | { | 
|  | Scalar t = p/q; | 
|  | Scalar u = ei_sqrt(Scalar(1) + ei_abs2(t)); | 
|  | if(q<Scalar(0)) | 
|  | u = -u; | 
|  | m_s = -Scalar(1)/u; | 
|  | m_c = -t * m_s; | 
|  | if(r) *r = q * u; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /**************************************************************************************** | 
|  | *   Implementation of MatrixBase methods | 
|  | ****************************************************************************************/ | 
|  |  | 
|  | /** \jacobi_module | 
|  | * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y: | 
|  | * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right )  =  J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$ | 
|  | * | 
|  | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|  | */ | 
|  | template<typename VectorX, typename VectorY, typename OtherScalar> | 
|  | void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const PlanarRotation<OtherScalar>& j); | 
|  |  | 
|  | /** \jacobi_module | 
|  | * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, | 
|  | * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. | 
|  | * | 
|  | * \sa class PlanarRotation, MatrixBase::applyOnTheRight(), ei_apply_rotation_in_the_plane() | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename OtherScalar> | 
|  | inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const PlanarRotation<OtherScalar>& j) | 
|  | { | 
|  | RowXpr x(this->row(p)); | 
|  | RowXpr y(this->row(q)); | 
|  | ei_apply_rotation_in_the_plane(x, y, j); | 
|  | } | 
|  |  | 
|  | /** \ingroup Jacobi_Module | 
|  | * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J | 
|  | * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. | 
|  | * | 
|  | * \sa class PlanarRotation, MatrixBase::applyOnTheLeft(), ei_apply_rotation_in_the_plane() | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename OtherScalar> | 
|  | inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const PlanarRotation<OtherScalar>& j) | 
|  | { | 
|  | ColXpr x(this->col(p)); | 
|  | ColXpr y(this->col(q)); | 
|  | ei_apply_rotation_in_the_plane(x, y, j.transpose()); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename VectorX, typename VectorY, typename OtherScalar> | 
|  | void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const PlanarRotation<OtherScalar>& j) | 
|  | { | 
|  | typedef typename VectorX::Index Index; | 
|  | typedef typename VectorX::Scalar Scalar; | 
|  | ei_assert(_x.size() == _y.size()); | 
|  | Index size = _x.size(); | 
|  | Index incrx = size ==1 ? 1 : &_x.coeffRef(1) - &_x.coeffRef(0); | 
|  | Index incry = size ==1 ? 1 : &_y.coeffRef(1) - &_y.coeffRef(0); | 
|  |  | 
|  | Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0); | 
|  | Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0); | 
|  |  | 
|  | if((VectorX::Flags & VectorY::Flags & PacketAccessBit) && incrx==1 && incry==1) | 
|  | { | 
|  | // both vectors are sequentially stored in memory => vectorization | 
|  | typedef typename ei_packet_traits<Scalar>::type Packet; | 
|  | enum { PacketSize = ei_packet_traits<Scalar>::size, Peeling = 2 }; | 
|  |  | 
|  | Index alignedStart = ei_first_aligned(y, size); | 
|  | Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; | 
|  |  | 
|  | const Packet pc = ei_pset1(Scalar(j.c())); | 
|  | const Packet ps = ei_pset1(Scalar(j.s())); | 
|  | ei_conj_helper<NumTraits<Scalar>::IsComplex,false> cj; | 
|  |  | 
|  | for(Index i=0; i<alignedStart; ++i) | 
|  | { | 
|  | Scalar xi = x[i]; | 
|  | Scalar yi = y[i]; | 
|  | x[i] =  j.c() * xi + ei_conj(j.s()) * yi; | 
|  | y[i] = -j.s() * xi + ei_conj(j.c()) * yi; | 
|  | } | 
|  |  | 
|  | Scalar* px = x + alignedStart; | 
|  | Scalar* py = y + alignedStart; | 
|  |  | 
|  | if(ei_first_aligned(x, size)==alignedStart) | 
|  | { | 
|  | for(Index i=alignedStart; i<alignedEnd; i+=PacketSize) | 
|  | { | 
|  | Packet xi = ei_pload(px); | 
|  | Packet yi = ei_pload(py); | 
|  | ei_pstore(px, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi))); | 
|  | ei_pstore(py, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi))); | 
|  | px += PacketSize; | 
|  | py += PacketSize; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); | 
|  | for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize) | 
|  | { | 
|  | Packet xi   = ei_ploadu(px); | 
|  | Packet xi1  = ei_ploadu(px+PacketSize); | 
|  | Packet yi   = ei_pload (py); | 
|  | Packet yi1  = ei_pload (py+PacketSize); | 
|  | ei_pstoreu(px, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi))); | 
|  | ei_pstoreu(px+PacketSize, ei_padd(ei_pmul(pc,xi1),cj.pmul(ps,yi1))); | 
|  | ei_pstore (py, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi))); | 
|  | ei_pstore (py+PacketSize, ei_psub(ei_pmul(pc,yi1),ei_pmul(ps,xi1))); | 
|  | px += Peeling*PacketSize; | 
|  | py += Peeling*PacketSize; | 
|  | } | 
|  | if(alignedEnd!=peelingEnd) | 
|  | { | 
|  | Packet xi = ei_ploadu(x+peelingEnd); | 
|  | Packet yi = ei_pload (y+peelingEnd); | 
|  | ei_pstoreu(x+peelingEnd, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi))); | 
|  | ei_pstore (y+peelingEnd, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi))); | 
|  | } | 
|  | } | 
|  |  | 
|  | for(Index i=alignedEnd; i<size; ++i) | 
|  | { | 
|  | Scalar xi = x[i]; | 
|  | Scalar yi = y[i]; | 
|  | x[i] =  j.c() * xi + ei_conj(j.s()) * yi; | 
|  | y[i] = -j.s() * xi + ei_conj(j.c()) * yi; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | for(Index i=0; i<size; ++i) | 
|  | { | 
|  | Scalar xi = *x; | 
|  | Scalar yi = *y; | 
|  | *x =  j.c() * xi + ei_conj(j.s()) * yi; | 
|  | *y = -j.s() * xi + ei_conj(j.c()) * yi; | 
|  | x += incrx; | 
|  | y += incry; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_JACOBI_H |