|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H | 
|  | #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H | 
|  |  | 
|  | /** \ingroup QR_Module | 
|  | * \nonstableyet | 
|  | * | 
|  | * \class ColPivHouseholderQR | 
|  | * | 
|  | * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting | 
|  | * | 
|  | * \param MatrixType the type of the matrix of which we are computing the QR decomposition | 
|  | * | 
|  | * This class performs a rank-revealing QR decomposition using Householder transformations. | 
|  | * | 
|  | * This decomposition performs column pivoting in order to be rank-revealing and improve | 
|  | * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. | 
|  | * | 
|  | * \sa MatrixBase::colPivHouseholderQr() | 
|  | */ | 
|  | template<typename _MatrixType> class ColPivHouseholderQR | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; | 
|  | typedef typename ei_plain_diag_type<MatrixType>::type HCoeffsType; | 
|  | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType; | 
|  | typedef typename ei_plain_row_type<MatrixType, Index>::type IntRowVectorType; | 
|  | typedef typename ei_plain_row_type<MatrixType>::type RowVectorType; | 
|  | typedef typename ei_plain_row_type<MatrixType, RealScalar>::type RealRowVectorType; | 
|  | typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType; | 
|  |  | 
|  | /** | 
|  | * \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). | 
|  | */ | 
|  | ColPivHouseholderQR() | 
|  | : m_qr(), | 
|  | m_hCoeffs(), | 
|  | m_colsPermutation(), | 
|  | m_colsTranspositions(), | 
|  | m_temp(), | 
|  | m_colSqNorms(), | 
|  | m_isInitialized(false) {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa ColPivHouseholderQR() | 
|  | */ | 
|  | ColPivHouseholderQR(Index rows, Index cols) | 
|  | : m_qr(rows, cols), | 
|  | m_hCoeffs(std::min(rows,cols)), | 
|  | m_colsPermutation(cols), | 
|  | m_colsTranspositions(cols), | 
|  | m_temp(cols), | 
|  | m_colSqNorms(cols), | 
|  | m_isInitialized(false), | 
|  | m_usePrescribedThreshold(false) {} | 
|  |  | 
|  | ColPivHouseholderQR(const MatrixType& matrix) | 
|  | : m_qr(matrix.rows(), matrix.cols()), | 
|  | m_hCoeffs(std::min(matrix.rows(),matrix.cols())), | 
|  | m_colsPermutation(matrix.cols()), | 
|  | m_colsTranspositions(matrix.cols()), | 
|  | m_temp(matrix.cols()), | 
|  | m_colSqNorms(matrix.cols()), | 
|  | m_isInitialized(false), | 
|  | m_usePrescribedThreshold(false) | 
|  | { | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which | 
|  | * *this is the QR decomposition, if any exists. | 
|  | * | 
|  | * \param b the right-hand-side of the equation to solve. | 
|  | * | 
|  | * \returns a solution. | 
|  | * | 
|  | * \note The case where b is a matrix is not yet implemented. Also, this | 
|  | *       code is space inefficient. | 
|  | * | 
|  | * \note_about_checking_solutions | 
|  | * | 
|  | * \note_about_arbitrary_choice_of_solution | 
|  | * | 
|  | * Example: \include ColPivHouseholderQR_solve.cpp | 
|  | * Output: \verbinclude ColPivHouseholderQR_solve.out | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const ei_solve_retval<ColPivHouseholderQR, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return ei_solve_retval<ColPivHouseholderQR, Rhs>(*this, b.derived()); | 
|  | } | 
|  |  | 
|  | HouseholderSequenceType householderQ(void) const; | 
|  |  | 
|  | /** \returns a reference to the matrix where the Householder QR decomposition is stored | 
|  | */ | 
|  | const MatrixType& matrixQR() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return m_qr; | 
|  | } | 
|  |  | 
|  | ColPivHouseholderQR& compute(const MatrixType& matrix); | 
|  |  | 
|  | const PermutationType& colsPermutation() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return m_colsPermutation; | 
|  | } | 
|  |  | 
|  | /** \returns the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * One way to work around that is to use logAbsDeterminant() instead. | 
|  | * | 
|  | * \sa logAbsDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar absDeterminant() const; | 
|  |  | 
|  | /** \returns the natural log of the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \note This method is useful to work around the risk of overflow/underflow that's inherent | 
|  | * to determinant computation. | 
|  | * | 
|  | * \sa absDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar logAbsDeterminant() const; | 
|  |  | 
|  | /** \returns the rank of the matrix of which *this is the QR decomposition. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline Index rank() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | RealScalar premultiplied_threshold = ei_abs(m_maxpivot) * threshold(); | 
|  | Index result = 0; | 
|  | for(Index i = 0; i < m_nonzero_pivots; ++i) | 
|  | result += (ei_abs(m_qr.coeff(i,i)) > premultiplied_threshold); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline Index dimensionOfKernel() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return cols() - rank(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the QR decomposition represents an injective | 
|  | *          linear map, i.e. has trivial kernel; false otherwise. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isInjective() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return rank() == cols(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the QR decomposition represents a surjective | 
|  | *          linear map; false otherwise. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isSurjective() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return rank() == rows(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the QR decomposition is invertible. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isInvertible() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return isInjective() && isSurjective(); | 
|  | } | 
|  |  | 
|  | /** \returns the inverse of the matrix of which *this is the QR decomposition. | 
|  | * | 
|  | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. | 
|  | *       Use isInvertible() to first determine whether this matrix is invertible. | 
|  | */ | 
|  | inline const | 
|  | ei_solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType> | 
|  | inverse() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return ei_solve_retval<ColPivHouseholderQR,typename MatrixType::IdentityReturnType> | 
|  | (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols())); | 
|  | } | 
|  |  | 
|  | inline Index rows() const { return m_qr.rows(); } | 
|  | inline Index cols() const { return m_qr.cols(); } | 
|  | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } | 
|  |  | 
|  | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), | 
|  | * who need to determine when pivots are to be considered nonzero. This is not used for the | 
|  | * QR decomposition itself. | 
|  | * | 
|  | * When it needs to get the threshold value, Eigen calls threshold(). By default, this | 
|  | * uses a formula to automatically determine a reasonable threshold. | 
|  | * Once you have called the present method setThreshold(const RealScalar&), | 
|  | * your value is used instead. | 
|  | * | 
|  | * \param threshold The new value to use as the threshold. | 
|  | * | 
|  | * A pivot will be considered nonzero if its absolute value is strictly greater than | 
|  | *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ | 
|  | * where maxpivot is the biggest pivot. | 
|  | * | 
|  | * If you want to come back to the default behavior, call setThreshold(Default_t) | 
|  | */ | 
|  | ColPivHouseholderQR& setThreshold(const RealScalar& threshold) | 
|  | { | 
|  | m_usePrescribedThreshold = true; | 
|  | m_prescribedThreshold = threshold; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Allows to come back to the default behavior, letting Eigen use its default formula for | 
|  | * determining the threshold. | 
|  | * | 
|  | * You should pass the special object Eigen::Default as parameter here. | 
|  | * \code qr.setThreshold(Eigen::Default); \endcode | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | ColPivHouseholderQR& setThreshold(Default_t) | 
|  | { | 
|  | m_usePrescribedThreshold = false; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Returns the threshold that will be used by certain methods such as rank(). | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | RealScalar threshold() const | 
|  | { | 
|  | ei_assert(m_isInitialized || m_usePrescribedThreshold); | 
|  | return m_usePrescribedThreshold ? m_prescribedThreshold | 
|  | // this formula comes from experimenting (see "LU precision tuning" thread on the list) | 
|  | // and turns out to be identical to Higham's formula used already in LDLt. | 
|  | : NumTraits<Scalar>::epsilon() * m_qr.diagonalSize(); | 
|  | } | 
|  |  | 
|  | /** \returns the number of nonzero pivots in the QR decomposition. | 
|  | * Here nonzero is meant in the exact sense, not in a fuzzy sense. | 
|  | * So that notion isn't really intrinsically interesting, but it is | 
|  | * still useful when implementing algorithms. | 
|  | * | 
|  | * \sa rank() | 
|  | */ | 
|  | inline Index nonzeroPivots() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LU is not initialized."); | 
|  | return m_nonzero_pivots; | 
|  | } | 
|  |  | 
|  | /** \returns the absolute value of the biggest pivot, i.e. the biggest | 
|  | *          diagonal coefficient of U. | 
|  | */ | 
|  | RealScalar maxPivot() const { return m_maxpivot; } | 
|  |  | 
|  | protected: | 
|  | MatrixType m_qr; | 
|  | HCoeffsType m_hCoeffs; | 
|  | PermutationType m_colsPermutation; | 
|  | IntRowVectorType m_colsTranspositions; | 
|  | RowVectorType m_temp; | 
|  | RealRowVectorType m_colSqNorms; | 
|  | bool m_isInitialized, m_usePrescribedThreshold; | 
|  | RealScalar m_prescribedThreshold, m_maxpivot; | 
|  | Index m_nonzero_pivots; | 
|  | Index m_det_pq; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return ei_abs(m_qr.diagonal().prod()); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return m_qr.diagonal().cwiseAbs().array().log().sum(); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix) | 
|  | { | 
|  | Index rows = matrix.rows(); | 
|  | Index cols = matrix.cols(); | 
|  | Index size = matrix.diagonalSize(); | 
|  |  | 
|  | m_qr = matrix; | 
|  | m_hCoeffs.resize(size); | 
|  |  | 
|  | m_temp.resize(cols); | 
|  |  | 
|  | m_colsTranspositions.resize(matrix.cols()); | 
|  | Index number_of_transpositions = 0; | 
|  |  | 
|  | m_colSqNorms.resize(cols); | 
|  | for(Index k = 0; k < cols; ++k) | 
|  | m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm(); | 
|  |  | 
|  | RealScalar threshold_helper = m_colSqNorms.maxCoeff() * ei_abs2(NumTraits<Scalar>::epsilon()) / rows; | 
|  |  | 
|  | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) | 
|  | m_maxpivot = RealScalar(0); | 
|  |  | 
|  | for(Index k = 0; k < size; ++k) | 
|  | { | 
|  | // first, we look up in our table m_colSqNorms which column has the biggest squared norm | 
|  | Index biggest_col_index; | 
|  | RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index); | 
|  | biggest_col_index += k; | 
|  |  | 
|  | // since our table m_colSqNorms accumulates imprecision at every step, we must now recompute | 
|  | // the actual squared norm of the selected column. | 
|  | // Note that not doing so does result in solve() sometimes returning inf/nan values | 
|  | // when running the unit test with 1000 repetitions. | 
|  | biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm(); | 
|  |  | 
|  | // we store that back into our table: it can't hurt to correct our table. | 
|  | m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm; | 
|  |  | 
|  | // if the current biggest column is smaller than epsilon times the initial biggest column, | 
|  | // terminate to avoid generating nan/inf values. | 
|  | // Note that here, if we test instead for "biggest == 0", we get a failure every 1000 (or so) | 
|  | // repetitions of the unit test, with the result of solve() filled with large values of the order | 
|  | // of 1/(size*epsilon). | 
|  | if(biggest_col_sq_norm < threshold_helper * (rows-k)) | 
|  | { | 
|  | m_nonzero_pivots = k; | 
|  | m_hCoeffs.tail(size-k).setZero(); | 
|  | m_qr.bottomRightCorner(rows-k,cols-k) | 
|  | .template triangularView<StrictlyLower>() | 
|  | .setZero(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // apply the transposition to the columns | 
|  | m_colsTranspositions.coeffRef(k) = biggest_col_index; | 
|  | if(k != biggest_col_index) { | 
|  | m_qr.col(k).swap(m_qr.col(biggest_col_index)); | 
|  | std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index)); | 
|  | ++number_of_transpositions; | 
|  | } | 
|  |  | 
|  | // generate the householder vector, store it below the diagonal | 
|  | RealScalar beta; | 
|  | m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); | 
|  |  | 
|  | // apply the householder transformation to the diagonal coefficient | 
|  | m_qr.coeffRef(k,k) = beta; | 
|  |  | 
|  | // remember the maximum absolute value of diagonal coefficients | 
|  | if(ei_abs(beta) > m_maxpivot) m_maxpivot = ei_abs(beta); | 
|  |  | 
|  | // apply the householder transformation | 
|  | m_qr.bottomRightCorner(rows-k, cols-k-1) | 
|  | .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); | 
|  |  | 
|  | // update our table of squared norms of the columns | 
|  | m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2(); | 
|  | } | 
|  |  | 
|  | m_colsPermutation.setIdentity(cols); | 
|  | for(Index k = 0; k < m_nonzero_pivots; ++k) | 
|  | m_colsPermutation.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); | 
|  |  | 
|  | m_det_pq = (number_of_transpositions%2) ? -1 : 1; | 
|  | m_isInitialized = true; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename _MatrixType, typename Rhs> | 
|  | struct ei_solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs> | 
|  | : ei_solve_retval_base<ColPivHouseholderQR<_MatrixType>, Rhs> | 
|  | { | 
|  | EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs) | 
|  |  | 
|  | template<typename Dest> void evalTo(Dest& dst) const | 
|  | { | 
|  | ei_assert(rhs().rows() == dec().rows()); | 
|  |  | 
|  | const int cols = dec().cols(), | 
|  | nonzero_pivots = dec().nonzeroPivots(); | 
|  |  | 
|  | if(nonzero_pivots == 0) | 
|  | { | 
|  | dst.setZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | typename Rhs::PlainObject c(rhs()); | 
|  |  | 
|  | // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T | 
|  | c.applyOnTheLeft(householderSequence( | 
|  | dec().matrixQR(), | 
|  | dec().hCoeffs(), | 
|  | true, | 
|  | dec().nonzeroPivots(), | 
|  | 0 | 
|  | )); | 
|  |  | 
|  | dec().matrixQR() | 
|  | .topLeftCorner(nonzero_pivots, nonzero_pivots) | 
|  | .template triangularView<Upper>() | 
|  | .solveInPlace(c.topRows(nonzero_pivots)); | 
|  |  | 
|  |  | 
|  | typename Rhs::PlainObject d(c); | 
|  | d.topRows(nonzero_pivots) | 
|  | = dec().matrixQR() | 
|  | .topLeftCorner(nonzero_pivots, nonzero_pivots) | 
|  | .template triangularView<Upper>() | 
|  | * c.topRows(nonzero_pivots); | 
|  |  | 
|  | for(Index i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i); | 
|  | for(Index i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \returns the matrix Q as a sequence of householder transformations */ | 
|  | template<typename MatrixType> | 
|  | typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType> | 
|  | ::householderQ() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate(), false, m_nonzero_pivots, 0); | 
|  | } | 
|  |  | 
|  | /** \return the column-pivoting Householder QR decomposition of \c *this. | 
|  | * | 
|  | * \sa class ColPivHouseholderQR | 
|  | */ | 
|  | template<typename Derived> | 
|  | const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::colPivHouseholderQr() const | 
|  | { | 
|  | return ColPivHouseholderQR<PlainObject>(eval()); | 
|  | } | 
|  |  | 
|  |  | 
|  | #endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |