|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void syrk(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1; | 
|  | typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic,RowMajor> Rhs3; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols); | 
|  |  | 
|  | Rhs1 rhs1 = Rhs1::Random(ei_random<int>(1,320), cols); | 
|  | Rhs2 rhs2 = Rhs2::Random(rows, ei_random<int>(1,320)); | 
|  | Rhs3 rhs3 = Rhs3::Random(ei_random<int>(1,320), rows); | 
|  |  | 
|  | Scalar s1 = ei_random<Scalar>(); | 
|  |  | 
|  | m2.setZero(); | 
|  | VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(rhs2,s1)._expression()), | 
|  | ((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix())); | 
|  |  | 
|  | m2.setZero(); | 
|  | VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs2,s1)._expression(), | 
|  | (s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix()); | 
|  |  | 
|  | m2.setZero(); | 
|  | VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs1.adjoint(),s1)._expression(), | 
|  | (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix()); | 
|  |  | 
|  | m2.setZero(); | 
|  | VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs1.adjoint(),s1)._expression(), | 
|  | (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Upper>().toDenseMatrix()); | 
|  |  | 
|  | m2.setZero(); | 
|  | VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs3.adjoint(),s1)._expression(), | 
|  | (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Lower>().toDenseMatrix()); | 
|  |  | 
|  | m2.setZero(); | 
|  | VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs3.adjoint(),s1)._expression(), | 
|  | (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Upper>().toDenseMatrix()); | 
|  | } | 
|  |  | 
|  | void test_product_syrk() | 
|  | { | 
|  | for(int i = 0; i < g_repeat ; i++) | 
|  | { | 
|  | int s; | 
|  | s = ei_random<int>(10,320); | 
|  | CALL_SUBTEST_1( syrk(MatrixXf(s, s)) ); | 
|  | s = ei_random<int>(10,320); | 
|  | CALL_SUBTEST_2( syrk(MatrixXd(s, s)) ); | 
|  | s = ei_random<int>(10,320); | 
|  | CALL_SUBTEST_3( syrk(MatrixXcd(s, s)) ); | 
|  | } | 
|  | } |