blob: 81d5a97ea2f17490b3aa875038b05dacc1444f00 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \class MatrixBase
* \ingroup Core_Module
*
* \brief Base class for all dense matrices, vectors, and expressions
*
* This class is the base that is inherited by all matrix, vector, and related expression
* types. Most of the Eigen API is contained in this class, and its base classes. Other important
* classes for the Eigen API are Matrix, and VectorwiseOp.
*
* Note that some methods are defined in other modules such as the \ref LU_Module LU module
* for all functions related to matrix inversions.
*
* \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc.
*
* When writing a function taking Eigen objects as argument, if you want your function
* to take as argument any matrix, vector, or expression, just let it take a
* MatrixBase argument. As an example, here is a function printFirstRow which, given
* a matrix, vector, or expression \a x, prints the first row of \a x.
*
* \code
template<typename Derived>
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
{
cout << x.row(0) << endl;
}
* \endcode
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN.
*
* \sa \blank \ref TopicClassHierarchy
*/
template <typename Derived>
class MatrixBase : public DenseBase<Derived> {
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef MatrixBase StorageBaseType;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseBase<Derived> Base;
using Base::ColsAtCompileTime;
using Base::Flags;
using Base::IsVectorAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::RowsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::coeff;
using Base::coeffRef;
using Base::cols;
using Base::const_cast_derived;
using Base::derived;
using Base::eval;
using Base::lazyAssign;
using Base::rows;
using Base::size;
using Base::operator-;
using Base::operator+=;
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
typedef typename Base::CoeffReturnType CoeffReturnType;
typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType;
typedef typename Base::RowXpr RowXpr;
typedef typename Base::ColXpr ColXpr;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** type of the equivalent square matrix */
typedef Matrix<Scalar, internal::max_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime),
internal::max_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime)>
SquareMatrixType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** \returns the size of the main diagonal, which is min(rows(),cols()).
* \sa rows(), cols(), SizeAtCompileTime. */
EIGEN_DEVICE_FUNC inline Index diagonalSize() const { return (numext::mini)(rows(), cols()); }
typedef typename Base::PlainObject PlainObject;
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> ConstantReturnType;
/** \internal the return type of MatrixBase::adjoint() */
typedef std::conditional_t<NumTraits<Scalar>::IsComplex,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
ConstTransposeReturnType>
AdjointReturnType;
/** \internal Return type of eigenvalues() */
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor>
EigenvaluesReturnType;
/** \internal the return type of identity */
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>, PlainObject> IdentityReturnType;
/** \internal the return type of unit vectors */
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>,
internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime>
BasisReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
#define EIGEN_DOC_UNARY_ADDONS(X, Y)
#include "../plugins/CommonCwiseBinaryOps.inc"
#include "../plugins/MatrixCwiseUnaryOps.inc"
#include "../plugins/MatrixCwiseBinaryOps.inc"
#ifdef EIGEN_MATRIXBASE_PLUGIN
#include EIGEN_MATRIXBASE_PLUGIN
#endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#undef EIGEN_DOC_UNARY_ADDONS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const MatrixBase& other);
// We cannot inherit here via Base::operator= since it is causing
// trouble with MSVC.
template <typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase<OtherDerived>& other);
template <typename OtherDerived>
EIGEN_DEVICE_FUNC Derived& operator=(const EigenBase<OtherDerived>& other);
template <typename OtherDerived>
EIGEN_DEVICE_FUNC Derived& operator=(const ReturnByValue<OtherDerived>& other);
template <typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator+=(const MatrixBase<OtherDerived>& other);
template <typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator-=(const MatrixBase<OtherDerived>& other);
template <typename OtherDerived>
EIGEN_DEVICE_FUNC const Product<Derived, OtherDerived> operator*(const MatrixBase<OtherDerived>& other) const;
template <typename OtherDerived>
EIGEN_DEVICE_FUNC const Product<Derived, OtherDerived, LazyProduct> lazyProduct(
const MatrixBase<OtherDerived>& other) const;
template <typename OtherDerived>
Derived& operator*=(const EigenBase<OtherDerived>& other);
template <typename OtherDerived>
void applyOnTheLeft(const EigenBase<OtherDerived>& other);
template <typename OtherDerived>
void applyOnTheRight(const EigenBase<OtherDerived>& other);
template <typename DiagonalDerived>
EIGEN_DEVICE_FUNC const Product<Derived, DiagonalDerived, LazyProduct> operator*(
const DiagonalBase<DiagonalDerived>& diagonal) const;
template <typename SkewDerived>
EIGEN_DEVICE_FUNC const Product<Derived, SkewDerived, LazyProduct> operator*(
const SkewSymmetricBase<SkewDerived>& skew) const;
template <typename OtherDerived>
EIGEN_DEVICE_FUNC typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,
typename internal::traits<OtherDerived>::Scalar>::ReturnType
dot(const MatrixBase<OtherDerived>& other) const;
EIGEN_DEVICE_FUNC RealScalar squaredNorm() const;
EIGEN_DEVICE_FUNC RealScalar norm() const;
RealScalar stableNorm() const;
RealScalar blueNorm() const;
RealScalar hypotNorm() const;
EIGEN_DEVICE_FUNC const PlainObject normalized() const;
EIGEN_DEVICE_FUNC const PlainObject stableNormalized() const;
EIGEN_DEVICE_FUNC void normalize();
EIGEN_DEVICE_FUNC void stableNormalize();
EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const;
EIGEN_DEVICE_FUNC void adjointInPlace();
typedef Diagonal<Derived> DiagonalReturnType;
EIGEN_DEVICE_FUNC DiagonalReturnType diagonal();
typedef Diagonal<const Derived> ConstDiagonalReturnType;
EIGEN_DEVICE_FUNC const ConstDiagonalReturnType diagonal() const;
template <int Index>
EIGEN_DEVICE_FUNC Diagonal<Derived, Index> diagonal();
template <int Index>
EIGEN_DEVICE_FUNC const Diagonal<const Derived, Index> diagonal() const;
EIGEN_DEVICE_FUNC Diagonal<Derived, DynamicIndex> diagonal(Index index);
EIGEN_DEVICE_FUNC const Diagonal<const Derived, DynamicIndex> diagonal(Index index) const;
template <unsigned int Mode>
struct TriangularViewReturnType {
typedef TriangularView<Derived, Mode> Type;
};
template <unsigned int Mode>
struct ConstTriangularViewReturnType {
typedef const TriangularView<const Derived, Mode> Type;
};
template <unsigned int Mode>
EIGEN_DEVICE_FUNC typename TriangularViewReturnType<Mode>::Type triangularView();
template <unsigned int Mode>
EIGEN_DEVICE_FUNC typename ConstTriangularViewReturnType<Mode>::Type triangularView() const;
template <unsigned int UpLo>
struct SelfAdjointViewReturnType {
typedef SelfAdjointView<Derived, UpLo> Type;
};
template <unsigned int UpLo>
struct ConstSelfAdjointViewReturnType {
typedef const SelfAdjointView<const Derived, UpLo> Type;
};
template <unsigned int UpLo>
EIGEN_DEVICE_FUNC typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
template <unsigned int UpLo>
EIGEN_DEVICE_FUNC typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;
const SparseView<Derived> sparseView(
const Scalar& m_reference = Scalar(0),
const typename NumTraits<Scalar>::Real& m_epsilon = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC static const IdentityReturnType Identity();
EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(Index rows, Index cols);
EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index size, Index i);
EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index i);
EIGEN_DEVICE_FUNC static const BasisReturnType UnitX();
EIGEN_DEVICE_FUNC static const BasisReturnType UnitY();
EIGEN_DEVICE_FUNC static const BasisReturnType UnitZ();
EIGEN_DEVICE_FUNC static const BasisReturnType UnitW();
EIGEN_DEVICE_FUNC const DiagonalWrapper<const Derived> asDiagonal() const;
const PermutationWrapper<const Derived> asPermutation() const;
EIGEN_DEVICE_FUNC const SkewSymmetricWrapper<const Derived> asSkewSymmetric() const;
EIGEN_DEVICE_FUNC Derived& setIdentity();
EIGEN_DEVICE_FUNC Derived& setIdentity(Index rows, Index cols);
EIGEN_DEVICE_FUNC Derived& setUnit(Index i);
EIGEN_DEVICE_FUNC Derived& setUnit(Index newSize, Index i);
bool isIdentity(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isDiagonal(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUpperTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isLowerTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isSkewSymmetric(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
template <typename OtherDerived>
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUnitary(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
/** \returns true if each coefficients of \c *this and \a other are all exactly equal.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator!= */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline bool operator==(const MatrixBase<OtherDerived>& other) const {
return cwiseEqual(other).all();
}
/** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator== */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline bool operator!=(const MatrixBase<OtherDerived>& other) const {
return cwiseNotEqual(other).any();
}
NoAlias<Derived, Eigen::MatrixBase> EIGEN_DEVICE_FUNC noalias();
// TODO forceAlignedAccess is temporarily disabled
// Need to find a nicer workaround.
inline const Derived& forceAlignedAccess() const { return derived(); }
inline Derived& forceAlignedAccess() { return derived(); }
template <bool Enable>
inline const Derived& forceAlignedAccessIf() const {
return derived();
}
template <bool Enable>
inline Derived& forceAlignedAccessIf() {
return derived();
}
EIGEN_DEVICE_FUNC Scalar trace() const;
template <int p>
EIGEN_DEVICE_FUNC RealScalar lpNorm() const;
EIGEN_DEVICE_FUNC MatrixBase<Derived>& matrix() { return *this; }
EIGEN_DEVICE_FUNC const MatrixBase<Derived>& matrix() const { return *this; }
/** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix
* \sa ArrayBase::matrix() */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper<Derived> array() { return ArrayWrapper<Derived>(derived()); }
/** \returns a const \link Eigen::ArrayBase Array \endlink expression of this matrix
* \sa ArrayBase::matrix() */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper<const Derived> array() const {
return ArrayWrapper<const Derived>(derived());
}
/////////// LU module ///////////
template <typename PermutationIndex = DefaultPermutationIndex>
inline const FullPivLU<PlainObject, PermutationIndex> fullPivLu() const;
template <typename PermutationIndex = DefaultPermutationIndex>
inline const PartialPivLU<PlainObject, PermutationIndex> partialPivLu() const;
template <typename PermutationIndex = DefaultPermutationIndex>
inline const PartialPivLU<PlainObject, PermutationIndex> lu() const;
EIGEN_DEVICE_FUNC inline const Inverse<Derived> inverse() const;
template <typename ResultType>
inline void computeInverseAndDetWithCheck(
ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible,
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()) const;
template <typename ResultType>
inline void computeInverseWithCheck(
ResultType& inverse, bool& invertible,
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC Scalar determinant() const;
/////////// Cholesky module ///////////
inline const LLT<PlainObject> llt() const;
inline const LDLT<PlainObject> ldlt() const;
/////////// QR module ///////////
inline const HouseholderQR<PlainObject> householderQr() const;
template <typename PermutationIndex = DefaultPermutationIndex>
inline const ColPivHouseholderQR<PlainObject, PermutationIndex> colPivHouseholderQr() const;
template <typename PermutationIndex = DefaultPermutationIndex>
inline const FullPivHouseholderQR<PlainObject, PermutationIndex> fullPivHouseholderQr() const;
template <typename PermutationIndex = DefaultPermutationIndex>
inline const CompleteOrthogonalDecomposition<PlainObject, PermutationIndex> completeOrthogonalDecomposition() const;
/////////// Eigenvalues module ///////////
inline EigenvaluesReturnType eigenvalues() const;
inline RealScalar operatorNorm() const;
/////////// SVD module ///////////
template <int Options = 0>
inline JacobiSVD<PlainObject, Options> jacobiSvd() const;
template <int Options = 0>
EIGEN_DEPRECATED inline JacobiSVD<PlainObject, Options> jacobiSvd(unsigned int computationOptions) const;
template <int Options = 0>
inline BDCSVD<PlainObject, Options> bdcSvd() const;
template <int Options = 0>
EIGEN_DEPRECATED inline BDCSVD<PlainObject, Options> bdcSvd(unsigned int computationOptions) const;
/////////// Geometry module ///////////
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline typename internal::cross_impl<Derived, OtherDerived>::return_type cross(
const MatrixBase<OtherDerived>& other) const;
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline PlainObject cross3(const MatrixBase<OtherDerived>& other) const;
EIGEN_DEVICE_FUNC inline PlainObject unitOrthogonal(void) const;
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline Matrix<Scalar, 3, 1> eulerAngles(Index a0, Index a1, Index a2) const;
EIGEN_DEVICE_FUNC inline Matrix<Scalar, 3, 1> canonicalEulerAngles(Index a0, Index a1, Index a2) const;
// put this as separate enum value to work around possible GCC 4.3 bug (?)
enum {
HomogeneousReturnTypeDirection =
ColsAtCompileTime == 1 && RowsAtCompileTime == 1
? ((internal::traits<Derived>::Flags & RowMajorBit) == RowMajorBit ? Horizontal : Vertical)
: ColsAtCompileTime == 1 ? Vertical
: Horizontal
};
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
EIGEN_DEVICE_FUNC inline HomogeneousReturnType homogeneous() const;
enum { SizeMinusOne = SizeAtCompileTime == Dynamic ? Dynamic : SizeAtCompileTime - 1 };
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime == 1 ? SizeMinusOne : 1,
internal::traits<Derived>::ColsAtCompileTime == 1 ? 1 : SizeMinusOne>
ConstStartMinusOne;
typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(ConstStartMinusOne, Scalar, quotient) HNormalizedReturnType;
EIGEN_DEVICE_FUNC inline const HNormalizedReturnType hnormalized() const;
////////// Householder module ///////////
EIGEN_DEVICE_FUNC void makeHouseholderInPlace(Scalar& tau, RealScalar& beta);
template <typename EssentialPart>
EIGEN_DEVICE_FUNC void makeHouseholder(EssentialPart& essential, Scalar& tau, RealScalar& beta) const;
template <typename EssentialPart>
EIGEN_DEVICE_FUNC void applyHouseholderOnTheLeft(const EssentialPart& essential, const Scalar& tau,
Scalar* workspace);
template <typename EssentialPart>
EIGEN_DEVICE_FUNC void applyHouseholderOnTheRight(const EssentialPart& essential, const Scalar& tau,
Scalar* workspace);
///////// Jacobi module /////////
template <typename OtherScalar>
EIGEN_DEVICE_FUNC void applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j);
template <typename OtherScalar>
EIGEN_DEVICE_FUNC void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);
///////// SparseCore module /////////
template <typename OtherDerived>
EIGEN_STRONG_INLINE const typename SparseMatrixBase<OtherDerived>::template CwiseProductDenseReturnType<Derived>::Type
cwiseProduct(const SparseMatrixBase<OtherDerived>& other) const {
return other.cwiseProduct(derived());
}
///////// MatrixFunctions module /////////
typedef typename internal::stem_function<Scalar>::type StemFunction;
#define EIGEN_MATRIX_FUNCTION(ReturnType, Name, Description) \
/** \returns an expression of the matrix Description of \c *this. \brief This function requires the <a \
* href="unsupported/group__MatrixFunctions__Module.html"> unsupported MatrixFunctions module</a>. To compute the \
* coefficient-wise Description use ArrayBase::##Name . */ \
const ReturnType<Derived> Name() const;
#define EIGEN_MATRIX_FUNCTION_1(ReturnType, Name, Description, Argument) \
/** \returns an expression of the matrix Description of \c *this. \brief This function requires the <a \
* href="unsupported/group__MatrixFunctions__Module.html"> unsupported MatrixFunctions module</a>. To compute the \
* coefficient-wise Description use ArrayBase::##Name . */ \
const ReturnType<Derived> Name(Argument) const;
EIGEN_MATRIX_FUNCTION(MatrixExponentialReturnValue, exp, exponential)
/** \brief Helper function for the <a href="unsupported/group__MatrixFunctions__Module.html"> unsupported
* MatrixFunctions module</a>.*/
const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const;
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cosh, hyperbolic cosine)
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sinh, hyperbolic sine)
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, atanh, inverse hyperbolic cosine)
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, acosh, inverse hyperbolic cosine)
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, asinh, inverse hyperbolic sine)
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cos, cosine)
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sin, sine)
EIGEN_MATRIX_FUNCTION(MatrixSquareRootReturnValue, sqrt, square root)
EIGEN_MATRIX_FUNCTION(MatrixLogarithmReturnValue, log, logarithm)
EIGEN_MATRIX_FUNCTION_1(MatrixPowerReturnValue, pow, power to \c p, const RealScalar& p)
EIGEN_MATRIX_FUNCTION_1(MatrixComplexPowerReturnValue, pow, power to \c p, const std::complex<RealScalar>& p)
protected:
EIGEN_DEFAULT_COPY_CONSTRUCTOR(MatrixBase)
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(MatrixBase)
private:
EIGEN_DEVICE_FUNC explicit MatrixBase(int);
EIGEN_DEVICE_FUNC MatrixBase(int, int);
template <typename OtherDerived>
EIGEN_DEVICE_FUNC explicit MatrixBase(const MatrixBase<OtherDerived>&);
protected:
// mixing arrays and matrices is not legal
template <typename OtherDerived>
Derived& operator+=(const ArrayBase<OtherDerived>&) {
EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar)) == -1,
YOU_CANNOT_MIX_ARRAYS_AND_MATRICES);
return *this;
}
// mixing arrays and matrices is not legal
template <typename OtherDerived>
Derived& operator-=(const ArrayBase<OtherDerived>&) {
EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar)) == -1,
YOU_CANNOT_MIX_ARRAYS_AND_MATRICES);
return *this;
}
};
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** replaces \c *this by \c *this * \a other.
*
* \returns a reference to \c *this
*
* Example: \include MatrixBase_applyOnTheRight.cpp
* Output: \verbinclude MatrixBase_applyOnTheRight.out
*/
template <typename Derived>
template <typename OtherDerived>
inline Derived& MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived>& other) {
other.derived().applyThisOnTheRight(derived());
return derived();
}
/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=().
*
* Example: \include MatrixBase_applyOnTheRight.cpp
* Output: \verbinclude MatrixBase_applyOnTheRight.out
*/
template <typename Derived>
template <typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived>& other) {
other.derived().applyThisOnTheRight(derived());
}
/** replaces \c *this by \a other * \c *this.
*
* Example: \include MatrixBase_applyOnTheLeft.cpp
* Output: \verbinclude MatrixBase_applyOnTheLeft.out
*/
template <typename Derived>
template <typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived>& other) {
other.derived().applyThisOnTheLeft(derived());
}
} // end namespace Eigen
#endif // EIGEN_MATRIXBASE_H