| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011-2018 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_PARTIALREDUX_H |
| #define EIGEN_PARTIALREDUX_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /*************************************************************************** |
| * |
| * This file provides evaluators for partial reductions. |
| * There are two modes: |
| * |
| * - scalar path: simply calls the respective function on the column or row. |
| * -> nothing special here, all the tricky part is handled by the return |
| * types of VectorwiseOp's members. They embed the functor calling the |
| * respective DenseBase's member function. |
| * |
| * - vectorized path: implements a packet-wise reductions followed by |
| * some (optional) processing of the outcome, e.g., division by n for mean. |
| * |
| * For the vectorized path let's observe that the packet-size and outer-unrolling |
| * are both decided by the assignment logic. So all we have to do is to decide |
| * on the inner unrolling. |
| * |
| * For the unrolling, we can reuse "internal::redux_vec_unroller" from Redux.h, |
| * but be need to be careful to specify correct increment. |
| * |
| ***************************************************************************/ |
| |
| /* logic deciding a strategy for unrolling of vectorized paths */ |
| template <typename Func, typename Evaluator> |
| struct packetwise_redux_traits { |
| enum { |
| OuterSize = int(Evaluator::IsRowMajor) ? Evaluator::RowsAtCompileTime : Evaluator::ColsAtCompileTime, |
| Cost = OuterSize == Dynamic ? HugeCost |
| : OuterSize * Evaluator::CoeffReadCost + (OuterSize - 1) * functor_traits<Func>::Cost, |
| Unrolling = Cost <= EIGEN_UNROLLING_LIMIT ? CompleteUnrolling : NoUnrolling |
| }; |
| }; |
| |
| /* Value to be returned when size==0 , by default let's return 0 */ |
| template <typename PacketType, typename Func> |
| EIGEN_DEVICE_FUNC PacketType packetwise_redux_empty_value(const Func&) { |
| const typename unpacket_traits<PacketType>::type zero(0); |
| return pset1<PacketType>(zero); |
| } |
| |
| /* For products the default is 1 */ |
| template <typename PacketType, typename Scalar> |
| EIGEN_DEVICE_FUNC PacketType packetwise_redux_empty_value(const scalar_product_op<Scalar, Scalar>&) { |
| return pset1<PacketType>(Scalar(1)); |
| } |
| |
| /* Perform the actual reduction */ |
| template <typename Func, typename Evaluator, int Unrolling = packetwise_redux_traits<Func, Evaluator>::Unrolling> |
| struct packetwise_redux_impl; |
| |
| /* Perform the actual reduction with unrolling */ |
| template <typename Func, typename Evaluator> |
| struct packetwise_redux_impl<Func, Evaluator, CompleteUnrolling> { |
| typedef redux_novec_unroller<Func, Evaluator, 0, Evaluator::SizeAtCompileTime> Base; |
| typedef typename Evaluator::Scalar Scalar; |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator& eval, const Func& func, Index /*size*/) { |
| return redux_vec_unroller<Func, Evaluator, 0, |
| packetwise_redux_traits<Func, Evaluator>::OuterSize>::template run<PacketType>(eval, |
| func); |
| } |
| }; |
| |
| /* Add a specialization of redux_vec_unroller for size==0 at compiletime. |
| * This specialization is not required for general reductions, which is |
| * why it is defined here. |
| */ |
| template <typename Func, typename Evaluator, Index Start> |
| struct redux_vec_unroller<Func, Evaluator, Start, 0> { |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator&, const Func& f) { |
| return packetwise_redux_empty_value<PacketType>(f); |
| } |
| }; |
| |
| /* Perform the actual reduction for dynamic sizes */ |
| template <typename Func, typename Evaluator> |
| struct packetwise_redux_impl<Func, Evaluator, NoUnrolling> { |
| typedef typename Evaluator::Scalar Scalar; |
| typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar; |
| |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC static PacketType run(const Evaluator& eval, const Func& func, Index size) { |
| if (size == 0) return packetwise_redux_empty_value<PacketType>(func); |
| |
| const Index size4 = (size - 1) & (~3); |
| PacketType p = eval.template packetByOuterInner<Unaligned, PacketType>(0, 0); |
| Index i = 1; |
| // This loop is optimized for instruction pipelining: |
| // - each iteration generates two independent instructions |
| // - thanks to branch prediction and out-of-order execution we have independent instructions across loops |
| for (; i < size4; i += 4) |
| p = func.packetOp( |
| p, func.packetOp(func.packetOp(eval.template packetByOuterInner<Unaligned, PacketType>(i + 0, 0), |
| eval.template packetByOuterInner<Unaligned, PacketType>(i + 1, 0)), |
| func.packetOp(eval.template packetByOuterInner<Unaligned, PacketType>(i + 2, 0), |
| eval.template packetByOuterInner<Unaligned, PacketType>(i + 3, 0)))); |
| for (; i < size; ++i) p = func.packetOp(p, eval.template packetByOuterInner<Unaligned, PacketType>(i, 0)); |
| return p; |
| } |
| }; |
| |
| template <typename ArgType, typename MemberOp, int Direction> |
| struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> > |
| : evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> > { |
| typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType; |
| typedef typename internal::nested_eval<ArgType, 1>::type ArgTypeNested; |
| typedef add_const_on_value_type_t<ArgTypeNested> ConstArgTypeNested; |
| typedef internal::remove_all_t<ArgTypeNested> ArgTypeNestedCleaned; |
| typedef typename ArgType::Scalar InputScalar; |
| typedef typename XprType::Scalar Scalar; |
| enum { |
| TraversalSize = Direction == int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime) |
| }; |
| typedef typename MemberOp::template Cost<int(TraversalSize)> CostOpType; |
| enum { |
| CoeffReadCost = TraversalSize == Dynamic ? HugeCost |
| : TraversalSize == 0 |
| ? 1 |
| : int(TraversalSize) * int(evaluator<ArgType>::CoeffReadCost) + int(CostOpType::value), |
| |
| ArgFlags_ = evaluator<ArgType>::Flags, |
| |
| Vectorizable_ = bool(int(ArgFlags_) & PacketAccessBit) && bool(MemberOp::Vectorizable) && |
| (Direction == int(Vertical) ? bool(ArgFlags_ & RowMajorBit) : (ArgFlags_ & RowMajorBit) == 0) && |
| (TraversalSize != 0), |
| |
| Flags = (traits<XprType>::Flags & RowMajorBit) | (evaluator<ArgType>::Flags & (HereditaryBits & (~RowMajorBit))) | |
| (Vectorizable_ ? PacketAccessBit : 0) | LinearAccessBit, |
| |
| Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr) : m_arg(xpr.nestedExpression()), m_functor(xpr.functor()) { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize == Dynamic ? HugeCost |
| : (TraversalSize == 0 ? 1 : int(CostOpType::value))); |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index i, Index j) const { |
| return coeff(Direction == Vertical ? j : i); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index index) const { |
| return m_functor(m_arg.template subVector<DirectionType(Direction)>(index)); |
| } |
| |
| template <int LoadMode, typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketType packet(Index i, Index j) const { |
| return packet<LoadMode, PacketType>(Direction == Vertical ? j : i); |
| } |
| |
| template <int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC PacketType packet(Index idx) const { |
| enum { PacketSize = internal::unpacket_traits<PacketType>::size }; |
| typedef Block<const ArgTypeNestedCleaned, Direction == Vertical ? int(ArgType::RowsAtCompileTime) : int(PacketSize), |
| Direction == Vertical ? int(PacketSize) : int(ArgType::ColsAtCompileTime), true /* InnerPanel */> |
| PanelType; |
| |
| PanelType panel(m_arg, Direction == Vertical ? 0 : idx, Direction == Vertical ? idx : 0, |
| Direction == Vertical ? m_arg.rows() : Index(PacketSize), |
| Direction == Vertical ? Index(PacketSize) : m_arg.cols()); |
| |
| // FIXME |
| // See bug 1612, currently if PacketSize==1 (i.e. complex<double> with 128bits registers) then the storage-order of |
| // panel get reversed and methods like packetByOuterInner do not make sense anymore in this context. So let's just |
| // by pass "vectorization" in this case: |
| if (PacketSize == 1) return internal::pset1<PacketType>(coeff(idx)); |
| |
| typedef typename internal::redux_evaluator<PanelType> PanelEvaluator; |
| PanelEvaluator panel_eval(panel); |
| typedef typename MemberOp::BinaryOp BinaryOp; |
| PacketType p = internal::packetwise_redux_impl<BinaryOp, PanelEvaluator>::template run<PacketType>( |
| panel_eval, m_functor.binaryFunc(), m_arg.outerSize()); |
| return p; |
| } |
| |
| protected: |
| ConstArgTypeNested m_arg; |
| const MemberOp m_functor; |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_PARTIALREDUX_H |