| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| // |
| // The conversion routines are Copyright (c) Fabian Giesen, 2016. |
| // The original license follows: |
| // |
| // Copyright (c) Fabian Giesen, 2016 |
| // All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted. |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Standard 16-bit float type, mostly useful for GPUs. Defines a new |
| // type Eigen::half (inheriting either from CUDA's or HIP's __half struct) with |
| // operator overloads such that it behaves basically as an arithmetic |
| // type. It will be quite slow on CPUs (so it is recommended to stay |
| // in fp32 for CPUs, except for simple parameter conversions, I/O |
| // to disk and the likes), but fast on GPUs. |
| |
| #ifndef EIGEN_HALF_H |
| #define EIGEN_HALF_H |
| |
| // IWYU pragma: private |
| #include "../../InternalHeaderCheck.h" |
| |
| #if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) |
| // When compiling with GPU support, the "__half_raw" base class as well as |
| // some other routines are defined in the GPU compiler header files |
| // (cuda_fp16.h, hip_fp16.h), and they are not tagged constexpr |
| // As a consequence, we get compile failures when compiling Eigen with |
| // GPU support. Hence the need to disable EIGEN_CONSTEXPR when building |
| // Eigen with GPU support |
| #pragma push_macro("EIGEN_CONSTEXPR") |
| #undef EIGEN_CONSTEXPR |
| #define EIGEN_CONSTEXPR |
| #endif |
| |
| #define F16_PACKET_FUNCTION(PACKET_F, PACKET_F16, METHOD) \ |
| template <> \ |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_UNUSED PACKET_F16 METHOD<PACKET_F16>(const PACKET_F16& _x) { \ |
| return float2half(METHOD<PACKET_F>(half2float(_x))); \ |
| } |
| |
| namespace Eigen { |
| |
| struct half; |
| |
| namespace half_impl { |
| |
| // We want to use the __half_raw struct from the HIP header file only during the device compile phase. |
| // This is required because of a quirk in the way TensorFlow GPU builds are done. |
| // When compiling TensorFlow source code with GPU support, files that |
| // * contain GPU kernels (i.e. *.cu.cc files) are compiled via hipcc |
| // * do not contain GPU kernels ( i.e. *.cc files) are compiled via gcc (typically) |
| // |
| // Tensorflow uses the Eigen::half type as its FP16 type, and there are functions that |
| // * are defined in a file that gets compiled via hipcc AND |
| // * have Eigen::half as a pass-by-value argument AND |
| // * are called in a file that gets compiled via gcc |
| // |
| // In the scenario described above the caller and callee will see different versions |
| // of the Eigen::half base class __half_raw, and they will be compiled by different compilers |
| // |
| // There appears to be an ABI mismatch between gcc and clang (which is called by hipcc) that results in |
| // the callee getting corrupted values for the Eigen::half argument. |
| // |
| // Making the host side compile phase of hipcc use the same Eigen::half impl, as the gcc compile, resolves |
| // this error, and hence the following convoluted #if condition |
| #if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE) |
| // Make our own __half_raw definition that is similar to CUDA's. |
| struct __half_raw { |
| #if (defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE)) |
| // Eigen::half can be used as the datatype for shared memory declarations (in Eigen and TF) |
| // The element type for shared memory cannot have non-trivial constructors |
| // and hence the following special casing (which skips the zero-initilization). |
| // Note that this check gets done even in the host compilation phase, and |
| // hence the need for this |
| EIGEN_DEVICE_FUNC __half_raw() {} |
| #else |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw() : x(0) {} |
| #endif |
| #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) |
| explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw(numext::uint16_t raw) : x(numext::bit_cast<__fp16>(raw)) {} |
| __fp16 x; |
| #else |
| explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw(numext::uint16_t raw) : x(raw) {} |
| numext::uint16_t x; |
| #endif |
| }; |
| |
| #elif defined(EIGEN_HAS_HIP_FP16) |
| // Nothing to do here |
| // HIP fp16 header file has a definition for __half_raw |
| #elif defined(EIGEN_HAS_CUDA_FP16) |
| #if EIGEN_CUDA_SDK_VER < 90000 |
| // In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw |
| typedef __half __half_raw; |
| #endif // defined(EIGEN_HAS_CUDA_FP16) |
| #elif defined(SYCL_DEVICE_ONLY) |
| typedef cl::sycl::half __half_raw; |
| #endif |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x); |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff); |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h); |
| |
| struct half_base : public __half_raw { |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base() {} |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half_raw& h) : __half_raw(h) {} |
| |
| #if defined(EIGEN_HAS_GPU_FP16) |
| #if defined(EIGEN_HAS_HIP_FP16) |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half& h) { x = __half_as_ushort(h); } |
| #elif defined(EIGEN_HAS_CUDA_FP16) |
| #if EIGEN_CUDA_SDK_VER >= 90000 |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {} |
| #endif |
| #endif |
| #endif |
| }; |
| |
| } // namespace half_impl |
| |
| // Class definition. |
| struct half : public half_impl::half_base { |
| // Writing this out as separate #if-else blocks to make the code easier to follow |
| // The same applies to most #if-else blocks in this file |
| #if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE) |
| // Use the same base class for the following two scenarios |
| // * when compiling without GPU support enabled |
| // * during host compile phase when compiling with GPU support enabled |
| typedef half_impl::__half_raw __half_raw; |
| #elif defined(EIGEN_HAS_HIP_FP16) |
| // Nothing to do here |
| // HIP fp16 header file has a definition for __half_raw |
| #elif defined(EIGEN_HAS_CUDA_FP16) |
| // Note that EIGEN_CUDA_SDK_VER is set to 0 even when compiling with HIP, so |
| // (EIGEN_CUDA_SDK_VER < 90000) is true even for HIP! So keeping this within |
| // #if defined(EIGEN_HAS_CUDA_FP16) is needed |
| #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 |
| typedef half_impl::__half_raw __half_raw; |
| #endif |
| #endif |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half() {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half_raw& h) : half_impl::half_base(h) {} |
| |
| #if defined(EIGEN_HAS_GPU_FP16) |
| #if defined(EIGEN_HAS_HIP_FP16) |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {} |
| #elif defined(EIGEN_HAS_CUDA_FP16) |
| #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {} |
| #endif |
| #endif |
| #endif |
| |
| explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(bool b) |
| : half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {} |
| template <class T> |
| explicit EIGEN_DEVICE_FUNC half(T val) |
| : half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(val))) {} |
| explicit EIGEN_DEVICE_FUNC half(float f) : half_impl::half_base(half_impl::float_to_half_rtne(f)) {} |
| |
| // Following the convention of numpy, converting between complex and |
| // float will lead to loss of imag value. |
| template <typename RealScalar> |
| explicit EIGEN_DEVICE_FUNC half(std::complex<RealScalar> c) |
| : half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(c.real()))) {} |
| |
| EIGEN_DEVICE_FUNC operator float() const { // NOLINT: Allow implicit conversion to float, because it is lossless. |
| return half_impl::half_to_float(*this); |
| } |
| |
| #if defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE) |
| EIGEN_DEVICE_FUNC operator __half() const { |
| ::__half_raw hr; |
| hr.x = x; |
| return __half(hr); |
| } |
| #endif |
| }; |
| |
| // TODO(majnemer): Get rid of this once we can rely on C++17 inline variables do |
| // solve the ODR issue. |
| namespace half_impl { |
| template <typename = void> |
| struct numeric_limits_half_impl { |
| static EIGEN_CONSTEXPR const bool is_specialized = true; |
| static EIGEN_CONSTEXPR const bool is_signed = true; |
| static EIGEN_CONSTEXPR const bool is_integer = false; |
| static EIGEN_CONSTEXPR const bool is_exact = false; |
| static EIGEN_CONSTEXPR const bool has_infinity = true; |
| static EIGEN_CONSTEXPR const bool has_quiet_NaN = true; |
| static EIGEN_CONSTEXPR const bool has_signaling_NaN = true; |
| EIGEN_DIAGNOSTICS(push) |
| EIGEN_DISABLE_DEPRECATED_WARNING |
| static EIGEN_CONSTEXPR const std::float_denorm_style has_denorm = std::denorm_present; |
| static EIGEN_CONSTEXPR const bool has_denorm_loss = false; |
| EIGEN_DIAGNOSTICS(pop) |
| static EIGEN_CONSTEXPR const std::float_round_style round_style = std::round_to_nearest; |
| static EIGEN_CONSTEXPR const bool is_iec559 = true; |
| // The C++ standard defines this as "true if the set of values representable |
| // by the type is finite." Half has finite precision. |
| static EIGEN_CONSTEXPR const bool is_bounded = true; |
| static EIGEN_CONSTEXPR const bool is_modulo = false; |
| static EIGEN_CONSTEXPR const int digits = 11; |
| static EIGEN_CONSTEXPR const int digits10 = |
| 3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html |
| static EIGEN_CONSTEXPR const int max_digits10 = |
| 5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html |
| static EIGEN_CONSTEXPR const int radix = std::numeric_limits<float>::radix; |
| static EIGEN_CONSTEXPR const int min_exponent = -13; |
| static EIGEN_CONSTEXPR const int min_exponent10 = -4; |
| static EIGEN_CONSTEXPR const int max_exponent = 16; |
| static EIGEN_CONSTEXPR const int max_exponent10 = 4; |
| static EIGEN_CONSTEXPR const bool traps = std::numeric_limits<float>::traps; |
| // IEEE754: "The implementer shall choose how tininess is detected, but shall |
| // detect tininess in the same way for all operations in radix two" |
| static EIGEN_CONSTEXPR const bool tinyness_before = std::numeric_limits<float>::tinyness_before; |
| |
| static EIGEN_CONSTEXPR Eigen::half(min)() { return Eigen::half_impl::raw_uint16_to_half(0x0400); } |
| static EIGEN_CONSTEXPR Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); } |
| static EIGEN_CONSTEXPR Eigen::half(max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); } |
| static EIGEN_CONSTEXPR Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x1400); } |
| static EIGEN_CONSTEXPR Eigen::half round_error() { return Eigen::half_impl::raw_uint16_to_half(0x3800); } |
| static EIGEN_CONSTEXPR Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); } |
| static EIGEN_CONSTEXPR Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); } |
| static EIGEN_CONSTEXPR Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7d00); } |
| static EIGEN_CONSTEXPR Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x0001); } |
| }; |
| |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::is_specialized; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::is_signed; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::is_integer; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::is_exact; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::has_infinity; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::has_quiet_NaN; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::has_signaling_NaN; |
| EIGEN_DIAGNOSTICS(push) |
| EIGEN_DISABLE_DEPRECATED_WARNING |
| template <typename T> |
| EIGEN_CONSTEXPR const std::float_denorm_style numeric_limits_half_impl<T>::has_denorm; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::has_denorm_loss; |
| EIGEN_DIAGNOSTICS(pop) |
| template <typename T> |
| EIGEN_CONSTEXPR const std::float_round_style numeric_limits_half_impl<T>::round_style; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::is_iec559; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::is_bounded; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::is_modulo; |
| template <typename T> |
| EIGEN_CONSTEXPR const int numeric_limits_half_impl<T>::digits; |
| template <typename T> |
| EIGEN_CONSTEXPR const int numeric_limits_half_impl<T>::digits10; |
| template <typename T> |
| EIGEN_CONSTEXPR const int numeric_limits_half_impl<T>::max_digits10; |
| template <typename T> |
| EIGEN_CONSTEXPR const int numeric_limits_half_impl<T>::radix; |
| template <typename T> |
| EIGEN_CONSTEXPR const int numeric_limits_half_impl<T>::min_exponent; |
| template <typename T> |
| EIGEN_CONSTEXPR const int numeric_limits_half_impl<T>::min_exponent10; |
| template <typename T> |
| EIGEN_CONSTEXPR const int numeric_limits_half_impl<T>::max_exponent; |
| template <typename T> |
| EIGEN_CONSTEXPR const int numeric_limits_half_impl<T>::max_exponent10; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::traps; |
| template <typename T> |
| EIGEN_CONSTEXPR const bool numeric_limits_half_impl<T>::tinyness_before; |
| } // end namespace half_impl |
| } // end namespace Eigen |
| |
| namespace std { |
| // If std::numeric_limits<T> is specialized, should also specialize |
| // std::numeric_limits<const T>, std::numeric_limits<volatile T>, and |
| // std::numeric_limits<const volatile T> |
| // https://stackoverflow.com/a/16519653/ |
| template <> |
| class numeric_limits<Eigen::half> : public Eigen::half_impl::numeric_limits_half_impl<> {}; |
| template <> |
| class numeric_limits<const Eigen::half> : public numeric_limits<Eigen::half> {}; |
| template <> |
| class numeric_limits<volatile Eigen::half> : public numeric_limits<Eigen::half> {}; |
| template <> |
| class numeric_limits<const volatile Eigen::half> : public numeric_limits<Eigen::half> {}; |
| } // end namespace std |
| |
| namespace Eigen { |
| |
| namespace half_impl { |
| |
| #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(HIP_DEVICE_COMPILE)) |
| // Note: We deliberately do *not* define this to 1 even if we have Arm's native |
| // fp16 type since GPU half types are rather different from native CPU half types. |
| // TODO: Rename to something like EIGEN_HAS_NATIVE_GPU_FP16 |
| #define EIGEN_HAS_NATIVE_FP16 |
| #endif |
| |
| // Intrinsics for native fp16 support. Note that on current hardware, |
| // these are no faster than fp32 arithmetic (you need to use the half2 |
| // versions to get the ALU speed increased), but you do save the |
| // conversion steps back and forth. |
| |
| #if defined(EIGEN_HAS_NATIVE_FP16) |
| EIGEN_STRONG_INLINE __device__ half operator+(const half& a, const half& b) { |
| #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 |
| return __hadd(::__half(a), ::__half(b)); |
| #else |
| return __hadd(a, b); |
| #endif |
| } |
| EIGEN_STRONG_INLINE __device__ half operator*(const half& a, const half& b) { return __hmul(a, b); } |
| EIGEN_STRONG_INLINE __device__ half operator-(const half& a, const half& b) { return __hsub(a, b); } |
| EIGEN_STRONG_INLINE __device__ half operator/(const half& a, const half& b) { |
| #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 |
| return __hdiv(a, b); |
| #else |
| float num = __half2float(a); |
| float denom = __half2float(b); |
| return __float2half(num / denom); |
| #endif |
| } |
| EIGEN_STRONG_INLINE __device__ half operator-(const half& a) { return __hneg(a); } |
| EIGEN_STRONG_INLINE __device__ half& operator+=(half& a, const half& b) { |
| a = a + b; |
| return a; |
| } |
| EIGEN_STRONG_INLINE __device__ half& operator*=(half& a, const half& b) { |
| a = a * b; |
| return a; |
| } |
| EIGEN_STRONG_INLINE __device__ half& operator-=(half& a, const half& b) { |
| a = a - b; |
| return a; |
| } |
| EIGEN_STRONG_INLINE __device__ half& operator/=(half& a, const half& b) { |
| a = a / b; |
| return a; |
| } |
| EIGEN_STRONG_INLINE __device__ bool operator==(const half& a, const half& b) { return __heq(a, b); } |
| EIGEN_STRONG_INLINE __device__ bool operator!=(const half& a, const half& b) { return __hne(a, b); } |
| EIGEN_STRONG_INLINE __device__ bool operator<(const half& a, const half& b) { return __hlt(a, b); } |
| EIGEN_STRONG_INLINE __device__ bool operator<=(const half& a, const half& b) { return __hle(a, b); } |
| EIGEN_STRONG_INLINE __device__ bool operator>(const half& a, const half& b) { return __hgt(a, b); } |
| EIGEN_STRONG_INLINE __device__ bool operator>=(const half& a, const half& b) { return __hge(a, b); } |
| #endif |
| |
| #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) && !defined(EIGEN_GPU_COMPILE_PHASE) |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(vaddh_f16(a.x, b.x)); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(vmulh_f16(a.x, b.x)); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(vsubh_f16(a.x, b.x)); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(vdivh_f16(a.x, b.x)); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) { return half(vnegh_f16(a.x)); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) { |
| a = half(vaddh_f16(a.x, b.x)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) { |
| a = half(vmulh_f16(a.x, b.x)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) { |
| a = half(vsubh_f16(a.x, b.x)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) { |
| a = half(vdivh_f16(a.x, b.x)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) { return vceqh_f16(a.x, b.x); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return !vceqh_f16(a.x, b.x); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) { return vclth_f16(a.x, b.x); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) { return vcleh_f16(a.x, b.x); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) { return vcgth_f16(a.x, b.x); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) { return vcgeh_f16(a.x, b.x); } |
| // We need to distinguish ‘clang as the CUDA compiler’ from ‘clang as the host compiler, |
| // invoked by NVCC’ (e.g. on MacOS). The former needs to see both host and device implementation |
| // of the functions, while the latter can only deal with one of them. |
| #elif !defined(EIGEN_HAS_NATIVE_FP16) || (EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) // Emulate support for half floats |
| |
| #if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC) |
| // We need to provide emulated *host-side* FP16 operators for clang. |
| #pragma push_macro("EIGEN_DEVICE_FUNC") |
| #undef EIGEN_DEVICE_FUNC |
| #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_HAS_NATIVE_FP16) |
| #define EIGEN_DEVICE_FUNC __host__ |
| #else // both host and device need emulated ops. |
| #define EIGEN_DEVICE_FUNC __host__ __device__ |
| #endif |
| #endif |
| |
| // Definitions for CPUs and older HIP+CUDA, mostly working through conversion |
| // to/from fp32. |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(float(a) + float(b)); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(float(a) * float(b)); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(float(a) - float(b)); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(float(a) / float(b)); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) { |
| half result; |
| result.x = a.x ^ 0x8000; |
| return result; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) { |
| a = half(float(a) + float(b)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) { |
| a = half(float(a) * float(b)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) { |
| a = half(float(a) - float(b)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) { |
| a = half(float(a) / float(b)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) { |
| return numext::equal_strict(float(a), float(b)); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { |
| return numext::not_equal_strict(float(a), float(b)); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) { return float(a) < float(b); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) { return float(a) <= float(b); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) { return float(a) > float(b); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) { return float(a) >= float(b); } |
| |
| #if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC) |
| #pragma pop_macro("EIGEN_DEVICE_FUNC") |
| #endif |
| #endif // Emulate support for half floats |
| |
| // Division by an index. Do it in full float precision to avoid accuracy |
| // issues in converting the denominator to half. |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, Index b) { |
| return half(static_cast<float>(a) / static_cast<float>(b)); |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a) { |
| a += half(1); |
| return a; |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a) { |
| a -= half(1); |
| return a; |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a, int) { |
| half original_value = a; |
| ++a; |
| return original_value; |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a, int) { |
| half original_value = a; |
| --a; |
| return original_value; |
| } |
| |
| // Conversion routines, including fallbacks for the host or older CUDA. |
| // Note that newer Intel CPUs (Haswell or newer) have vectorized versions of |
| // these in hardware. If we need more performance on older/other CPUs, they are |
| // also possible to vectorize directly. |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x) { |
| // We cannot simply do a "return __half_raw(x)" here, because __half_raw is union type |
| // in the hip_fp16 header file, and that will trigger a compile error |
| // On the other hand, having anything but a return statement also triggers a compile error |
| // because this is constexpr function. |
| // Fortunately, since we need to disable EIGEN_CONSTEXPR for GPU anyway, we can get out |
| // of this catch22 by having separate bodies for GPU / non GPU |
| #if defined(EIGEN_HAS_GPU_FP16) |
| __half_raw h; |
| h.x = x; |
| return h; |
| #else |
| return __half_raw(x); |
| #endif |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC numext::uint16_t raw_half_as_uint16(const __half_raw& h) { |
| // HIP/CUDA/Default have a member 'x' of type uint16_t. |
| // For ARM64 native half, the member 'x' is of type __fp16, so we need to bit-cast. |
| // For SYCL, cl::sycl::half is _Float16, so cast directly. |
| #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) |
| return numext::bit_cast<numext::uint16_t>(h.x); |
| #elif defined(SYCL_DEVICE_ONLY) |
| return numext::bit_cast<numext::uint16_t>(h); |
| #else |
| return h.x; |
| #endif |
| } |
| |
| union float32_bits { |
| unsigned int u; |
| float f; |
| }; |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) { |
| #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) |
| __half tmp_ff = __float2half(ff); |
| return *(__half_raw*)&tmp_ff; |
| |
| #elif defined(EIGEN_HAS_FP16_C) |
| __half_raw h; |
| #if EIGEN_COMP_MSVC |
| // MSVC does not have scalar instructions. |
| h.x = _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(ff), 0), 0); |
| #else |
| h.x = _cvtss_sh(ff, 0); |
| #endif |
| return h; |
| |
| #elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) |
| __half_raw h; |
| h.x = static_cast<__fp16>(ff); |
| return h; |
| |
| #else |
| float32_bits f; |
| f.f = ff; |
| |
| const float32_bits f32infty = {255 << 23}; |
| const float32_bits f16max = {(127 + 16) << 23}; |
| const float32_bits denorm_magic = {((127 - 15) + (23 - 10) + 1) << 23}; |
| unsigned int sign_mask = 0x80000000u; |
| __half_raw o; |
| o.x = static_cast<numext::uint16_t>(0x0u); |
| |
| unsigned int sign = f.u & sign_mask; |
| f.u ^= sign; |
| |
| // NOTE all the integer compares in this function can be safely |
| // compiled into signed compares since all operands are below |
| // 0x80000000. Important if you want fast straight SSE2 code |
| // (since there's no unsigned PCMPGTD). |
| |
| if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set) |
| o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf |
| } else { // (De)normalized number or zero |
| if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero |
| // use a magic value to align our 10 mantissa bits at the bottom of |
| // the float. as long as FP addition is round-to-nearest-even this |
| // just works. |
| f.f += denorm_magic.f; |
| |
| // and one integer subtract of the bias later, we have our final float! |
| o.x = static_cast<numext::uint16_t>(f.u - denorm_magic.u); |
| } else { |
| unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd |
| |
| // update exponent, rounding bias part 1 |
| // Equivalent to `f.u += ((unsigned int)(15 - 127) << 23) + 0xfff`, but |
| // without arithmetic overflow. |
| f.u += 0xc8000fffU; |
| // rounding bias part 2 |
| f.u += mant_odd; |
| // take the bits! |
| o.x = static_cast<numext::uint16_t>(f.u >> 13); |
| } |
| } |
| |
| o.x |= static_cast<numext::uint16_t>(sign >> 16); |
| return o; |
| #endif |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) { |
| #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) |
| return __half2float(h); |
| #elif defined(EIGEN_HAS_FP16_C) |
| #if EIGEN_COMP_MSVC |
| // MSVC does not have scalar instructions. |
| return _mm_cvtss_f32(_mm_cvtph_ps(_mm_set1_epi16(h.x))); |
| #else |
| return _cvtsh_ss(h.x); |
| #endif |
| #elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) |
| return static_cast<float>(h.x); |
| #else |
| const float32_bits magic = {113 << 23}; |
| const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift |
| float32_bits o; |
| |
| o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits |
| unsigned int exp = shifted_exp & o.u; // just the exponent |
| o.u += (127 - 15) << 23; // exponent adjust |
| |
| // handle exponent special cases |
| if (exp == shifted_exp) { // Inf/NaN? |
| o.u += (128 - 16) << 23; // extra exp adjust |
| } else if (exp == 0) { // Zero/Denormal? |
| o.u += 1 << 23; // extra exp adjust |
| o.f -= magic.f; // renormalize |
| } |
| |
| o.u |= (h.x & 0x8000) << 16; // sign bit |
| return o.f; |
| #endif |
| } |
| |
| // --- standard functions --- |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isinf)(const half& a) { |
| #ifdef EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC |
| return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) == 0x7c00; |
| #else |
| return (a.x & 0x7fff) == 0x7c00; |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isnan)(const half& a) { |
| #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) |
| return __hisnan(a); |
| #elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) |
| return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) > 0x7c00; |
| #else |
| return (a.x & 0x7fff) > 0x7c00; |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isfinite)(const half& a) { |
| return !(isinf EIGEN_NOT_A_MACRO(a)) && !(isnan EIGEN_NOT_A_MACRO(a)); |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) { |
| #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) |
| return half(vabsh_f16(a.x)); |
| #else |
| half result; |
| result.x = a.x & 0x7FFF; |
| return result; |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) { |
| #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \ |
| defined(EIGEN_HIP_DEVICE_COMPILE) |
| return half(hexp(a)); |
| #else |
| return half(::expf(float(a))); |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) { return half(numext::expm1(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) { |
| #if (defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && \ |
| EIGEN_CUDA_ARCH >= 530) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) |
| return half(hlog(a)); |
| #else |
| return half(::logf(float(a))); |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) { return half(numext::log1p(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) { return half(::log10f(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log2(const half& a) { |
| return half(static_cast<float>(EIGEN_LOG2E) * ::logf(float(a))); |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) { |
| #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \ |
| defined(EIGEN_HIP_DEVICE_COMPILE) |
| return half(hsqrt(a)); |
| #else |
| return half(::sqrtf(float(a))); |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) { |
| return half(::powf(float(a), float(b))); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan2(const half& a, const half& b) { |
| return half(::atan2f(float(a), float(b))); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) { return half(::sinf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) { return half(::cosf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) { return half(::tanf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) { return half(::tanhf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half asin(const half& a) { return half(::asinf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half acos(const half& a) { return half(::acosf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan(const half& a) { return half(::atanf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atanh(const half& a) { return half(::atanhf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) { |
| #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \ |
| defined(EIGEN_HIP_DEVICE_COMPILE) |
| return half(hfloor(a)); |
| #else |
| return half(::floorf(float(a))); |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) { |
| #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \ |
| defined(EIGEN_HIP_DEVICE_COMPILE) |
| return half(hceil(a)); |
| #else |
| return half(::ceilf(float(a))); |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half rint(const half& a) { return half(::rintf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half round(const half& a) { return half(::roundf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half trunc(const half& a) { return half(::truncf(float(a))); } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half fmod(const half& a, const half& b) { |
| return half(::fmodf(float(a), float(b))); |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(min)(const half& a, const half& b) { |
| #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) |
| return __hlt(b, a) ? b : a; |
| #else |
| const float f1 = static_cast<float>(a); |
| const float f2 = static_cast<float>(b); |
| return f2 < f1 ? b : a; |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(max)(const half& a, const half& b) { |
| #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) |
| return __hlt(a, b) ? b : a; |
| #else |
| const float f1 = static_cast<float>(a); |
| const float f2 = static_cast<float>(b); |
| return f1 < f2 ? b : a; |
| #endif |
| } |
| |
| #ifndef EIGEN_NO_IO |
| EIGEN_ALWAYS_INLINE std::ostream& operator<<(std::ostream& os, const half& v) { |
| os << static_cast<float>(v); |
| return os; |
| } |
| #endif |
| |
| } // end namespace half_impl |
| |
| // import Eigen::half_impl::half into Eigen namespace |
| // using half_impl::half; |
| |
| namespace internal { |
| |
| template <> |
| struct is_arithmetic<half> { |
| enum { value = true }; |
| }; |
| |
| template <> |
| struct random_impl<half> { |
| enum : int { MantissaBits = 10 }; |
| using Impl = random_impl<float>; |
| static EIGEN_DEVICE_FUNC inline half run(const half& x, const half& y) { |
| float result = Impl::run(x, y, MantissaBits); |
| return half(result); |
| } |
| static EIGEN_DEVICE_FUNC inline half run() { |
| float result = Impl::run(MantissaBits); |
| return half(result); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| template <> |
| struct NumTraits<Eigen::half> : GenericNumTraits<Eigen::half> { |
| enum { IsSigned = true, IsInteger = false, IsComplex = false, RequireInitialization = false }; |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half epsilon() { |
| return half_impl::raw_uint16_to_half(0x0800); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { |
| return half_impl::raw_uint16_to_half(0x211f); // Eigen::half(1e-2f); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half highest() { |
| return half_impl::raw_uint16_to_half(0x7bff); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half lowest() { |
| return half_impl::raw_uint16_to_half(0xfbff); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half infinity() { |
| return half_impl::raw_uint16_to_half(0x7c00); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() { |
| return half_impl::raw_uint16_to_half(0x7e00); |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) |
| #pragma pop_macro("EIGEN_CONSTEXPR") |
| #endif |
| |
| namespace Eigen { |
| namespace numext { |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| |
| template <> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(const Eigen::half& h) { |
| return (half_impl::isnan)(h); |
| } |
| |
| template <> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isinf)(const Eigen::half& h) { |
| return (half_impl::isinf)(h); |
| } |
| |
| template <> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const Eigen::half& h) { |
| return (half_impl::isfinite)(h); |
| } |
| |
| #endif |
| |
| template <> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bit_cast<Eigen::half, uint16_t>(const uint16_t& src) { |
| return Eigen::half(Eigen::half_impl::raw_uint16_to_half(src)); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast<uint16_t, Eigen::half>(const Eigen::half& src) { |
| return Eigen::half_impl::raw_half_as_uint16(src); |
| } |
| |
| } // namespace numext |
| } // namespace Eigen |
| |
| // Add the missing shfl* intrinsics. |
| // The __shfl* functions are only valid on HIP or _CUDA_ARCH_ >= 300. |
| // CUDA defines them for (__CUDA_ARCH__ >= 300 || !defined(__CUDA_ARCH__)) |
| // |
| // HIP and CUDA prior to SDK 9.0 define |
| // __shfl, __shfl_up, __shfl_down, __shfl_xor for int and float |
| // CUDA since 9.0 deprecates those and instead defines |
| // __shfl_sync, __shfl_up_sync, __shfl_down_sync, __shfl_xor_sync, |
| // with native support for __half and __nv_bfloat16 |
| // |
| // Note that the following are __device__ - only functions. |
| #if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 300)) || defined(EIGEN_HIPCC) |
| |
| #if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 90000 |
| |
| __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_sync(unsigned mask, Eigen::half var, int srcLane, |
| int width = warpSize) { |
| const __half h = var; |
| return static_cast<Eigen::half>(__shfl_sync(mask, h, srcLane, width)); |
| } |
| |
| __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up_sync(unsigned mask, Eigen::half var, unsigned int delta, |
| int width = warpSize) { |
| const __half h = var; |
| return static_cast<Eigen::half>(__shfl_up_sync(mask, h, delta, width)); |
| } |
| |
| __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down_sync(unsigned mask, Eigen::half var, unsigned int delta, |
| int width = warpSize) { |
| const __half h = var; |
| return static_cast<Eigen::half>(__shfl_down_sync(mask, h, delta, width)); |
| } |
| |
| __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor_sync(unsigned mask, Eigen::half var, int laneMask, |
| int width = warpSize) { |
| const __half h = var; |
| return static_cast<Eigen::half>(__shfl_xor_sync(mask, h, laneMask, width)); |
| } |
| |
| #else // HIP or CUDA SDK < 9.0 |
| |
| __device__ EIGEN_STRONG_INLINE Eigen::half __shfl(Eigen::half var, int srcLane, int width = warpSize) { |
| const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var)); |
| return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl(ivar, srcLane, width))); |
| } |
| |
| __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up(Eigen::half var, unsigned int delta, int width = warpSize) { |
| const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var)); |
| return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_up(ivar, delta, width))); |
| } |
| |
| __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down(Eigen::half var, unsigned int delta, int width = warpSize) { |
| const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var)); |
| return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_down(ivar, delta, width))); |
| } |
| |
| __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width = warpSize) { |
| const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var)); |
| return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_xor(ivar, laneMask, width))); |
| } |
| |
| #endif // HIP vs CUDA |
| #endif // __shfl* |
| |
| // ldg() has an overload for __half_raw, but we also need one for Eigen::half. |
| #if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 350)) || defined(EIGEN_HIPCC) |
| EIGEN_STRONG_INLINE __device__ Eigen::half __ldg(const Eigen::half* ptr) { |
| return Eigen::half_impl::raw_uint16_to_half(__ldg(reinterpret_cast<const Eigen::numext::uint16_t*>(ptr))); |
| } |
| #endif // __ldg |
| |
| #if EIGEN_HAS_STD_HASH |
| namespace std { |
| template <> |
| struct hash<Eigen::half> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const { |
| return static_cast<std::size_t>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(a)); |
| } |
| }; |
| } // end namespace std |
| #endif |
| |
| namespace Eigen { |
| namespace internal { |
| |
| template <> |
| struct cast_impl<float, half> { |
| EIGEN_DEVICE_FUNC static inline half run(const float& a) { |
| #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) |
| return __float2half(a); |
| #else |
| return half(a); |
| #endif |
| } |
| }; |
| |
| template <> |
| struct cast_impl<int, half> { |
| EIGEN_DEVICE_FUNC static inline half run(const int& a) { |
| #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) |
| return __float2half(static_cast<float>(a)); |
| #else |
| return half(static_cast<float>(a)); |
| #endif |
| } |
| }; |
| |
| template <> |
| struct cast_impl<half, float> { |
| EIGEN_DEVICE_FUNC static inline float run(const half& a) { |
| #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ |
| (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) |
| return __half2float(a); |
| #else |
| return static_cast<float>(a); |
| #endif |
| } |
| }; |
| |
| } // namespace internal |
| } // namespace Eigen |
| |
| #endif // EIGEN_HALF_H |