blob: 0fa0319a03deffb6a1837cf5337279b90ab01fe2 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HYPERPLANE_H
#define EIGEN_HYPERPLANE_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Hyperplane
*
* \brief A hyperplane
*
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
*
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients
* \tparam AmbientDim_ the dimension of the ambient space, can be a compile time value or Dynamic.
* Notice that the dimension of the hyperplane is AmbientDim_-1.
*
* This class represents an hyperplane as the zero set of the implicit equation
* \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
* and \f$ d \f$ is the distance (offset) to the origin.
*/
template <typename Scalar_, int AmbientDim_, int Options_>
class Hyperplane {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,
AmbientDim_ == Dynamic ? Dynamic : AmbientDim_ + 1)
enum { AmbientDimAtCompileTime = AmbientDim_, Options = Options_ };
typedef Scalar_ Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar, AmbientDimAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, Index(AmbientDimAtCompileTime) == Dynamic ? Dynamic : Index(AmbientDimAtCompileTime) + 1, 1,
Options>
Coefficients;
typedef Block<Coefficients, AmbientDimAtCompileTime, 1> NormalReturnType;
typedef const Block<const Coefficients, AmbientDimAtCompileTime, 1> ConstNormalReturnType;
/** Default constructor without initialization */
EIGEN_DEVICE_FUNC inline Hyperplane() {}
template <int OtherOptions>
EIGEN_DEVICE_FUNC Hyperplane(const Hyperplane<Scalar, AmbientDimAtCompileTime, OtherOptions>& other)
: m_coeffs(other.coeffs()) {}
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
* of the ambient space */
EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim + 1) {}
/** Construct a plane from its normal \a n and a point \a e onto the plane.
* \warning the vector normal is assumed to be normalized.
*/
EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e) : m_coeffs(n.size() + 1) {
normal() = n;
offset() = -n.dot(e);
}
/** Constructs a plane from its normal \a n and distance to the origin \a d
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
* \warning the vector normal is assumed to be normalized.
*/
EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d) : m_coeffs(n.size() + 1) {
normal() = n;
offset() = d;
}
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
*/
EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) {
Hyperplane result(p0.size());
result.normal() = (p1 - p0).unitOrthogonal();
result.offset() = -p0.dot(result.normal());
return result;
}
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
* is required to be exactly 3.
*/
EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) {
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
Hyperplane result(p0.size());
VectorType v0(p2 - p0), v1(p1 - p0);
result.normal() = v0.cross(v1);
RealScalar norm = result.normal().norm();
if (norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon()) {
Matrix<Scalar, 2, 3> m;
m << v0.transpose(), v1.transpose();
JacobiSVD<Matrix<Scalar, 2, 3>, ComputeFullV> svd(m);
result.normal() = svd.matrixV().col(2);
} else
result.normal() /= norm;
result.offset() = -p0.dot(result.normal());
return result;
}
/** Constructs a hyperplane passing through the parametrized line \a parametrized.
* If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
* so an arbitrary choice is made.
*/
// FIXME to be consistent with the rest this could be implemented as a static Through function ??
EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized) {
normal() = parametrized.direction().unitOrthogonal();
offset() = -parametrized.origin().dot(normal());
}
EIGEN_DEVICE_FUNC ~Hyperplane() {}
/** \returns the dimension in which the plane holds */
EIGEN_DEVICE_FUNC inline Index dim() const {
return AmbientDimAtCompileTime == Dynamic ? m_coeffs.size() - 1 : Index(AmbientDimAtCompileTime);
}
/** normalizes \c *this */
EIGEN_DEVICE_FUNC void normalize(void) { m_coeffs /= normal().norm(); }
/** \returns the signed distance between the plane \c *this and a point \a p.
* \sa absDistance()
*/
EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
/** \returns the absolute distance between the plane \c *this and a point \a p.
* \sa signedDistance()
*/
EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); }
/** \returns the projection of a point \a p onto the plane \c *this.
*/
EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const {
return ConstNormalReturnType(m_coeffs, 0, 0, dim(), 1);
}
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs, 0, 0, dim(), 1); }
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
* \warning the vector normal is assumed to be normalized.
*/
EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
* of the implicit equation */
EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); }
/** \returns a constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
/** \returns the intersection of *this with \a other.
*
* \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
*
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
*/
EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const {
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
// whether the two lines are approximately parallel.
if (internal::isMuchSmallerThan(det, Scalar(1))) { // special case where the two lines are approximately parallel.
// Pick any point on the first line.
if (numext::abs(coeffs().coeff(1)) > numext::abs(coeffs().coeff(0)))
return VectorType(coeffs().coeff(1), -coeffs().coeff(2) / coeffs().coeff(1) - coeffs().coeff(0));
else
return VectorType(-coeffs().coeff(2) / coeffs().coeff(0) - coeffs().coeff(1), coeffs().coeff(0));
} else { // general case
Scalar invdet = Scalar(1) / det;
return VectorType(
invdet * (coeffs().coeff(1) * other.coeffs().coeff(2) - other.coeffs().coeff(1) * coeffs().coeff(2)),
invdet * (other.coeffs().coeff(0) * coeffs().coeff(2) - coeffs().coeff(0) * other.coeffs().coeff(2)));
}
}
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
*
* \param mat the Dim x Dim transformation matrix
* \param traits specifies whether the matrix \a mat represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
*/
template <typename XprType>
EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine) {
if (traits == Affine) {
normal() = mat.inverse().transpose() * normal();
m_coeffs /= normal().norm();
} else if (traits == Isometry)
normal() = mat * normal();
else {
eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
}
return *this;
}
/** Applies the transformation \a t to \c *this and returns a reference to \c *this.
*
* \param t the transformation of dimension Dim
* \param traits specifies whether the transformation \a t represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
* Other kind of transformations are not supported.
*/
template <int TrOptions>
EIGEN_DEVICE_FUNC inline Hyperplane& transform(const Transform<Scalar, AmbientDimAtCompileTime, Affine, TrOptions>& t,
TransformTraits traits = Affine) {
transform(t.linear(), traits);
offset() -= normal().dot(t.translation());
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template <typename NewScalarType>
EIGEN_DEVICE_FUNC inline
typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType, AmbientDimAtCompileTime, Options> >::type
cast() const {
return
typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType, AmbientDimAtCompileTime, Options> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template <typename OtherScalarType, int OtherOptions>
EIGEN_DEVICE_FUNC inline explicit Hyperplane(
const Hyperplane<OtherScalarType, AmbientDimAtCompileTime, OtherOptions>& other) {
m_coeffs = other.coeffs().template cast<Scalar>();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
template <int OtherOptions>
EIGEN_DEVICE_FUNC bool isApprox(
const Hyperplane<Scalar, AmbientDimAtCompileTime, OtherOptions>& other,
const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const {
return m_coeffs.isApprox(other.m_coeffs, prec);
}
protected:
Coefficients m_coeffs;
};
} // end namespace Eigen
#endif // EIGEN_HYPERPLANE_H