blob: a0604cee16af284800e592b0496fdb37d4d46f2d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SCALING_H
#define EIGEN_SCALING_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class UniformScaling
*
* \brief Represents a generic uniform scaling transformation
*
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients.
*
* This class represent a uniform scaling transformation. It is the return
* type of Scaling(Scalar), and most of the time this is the only way it
* is used. In particular, this class is not aimed to be used to store a scaling transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* To represent an axis aligned scaling, use the DiagonalMatrix class.
*
* \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
*/
namespace internal {
// This helper helps nvcc+MSVC to properly parse this file.
// See bug 1412.
template <typename Scalar, int Dim, int Mode>
struct uniformscaling_times_affine_returntype {
enum { NewMode = int(Mode) == int(Isometry) ? Affine : Mode };
typedef Transform<Scalar, Dim, NewMode> type;
};
} // namespace internal
template <typename Scalar_>
class UniformScaling {
public:
/** the scalar type of the coefficients */
typedef Scalar_ Scalar;
protected:
Scalar m_factor;
public:
/** Default constructor without initialization. */
UniformScaling() {}
/** Constructs and initialize a uniform scaling transformation */
explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}
inline const Scalar& factor() const { return m_factor; }
inline Scalar& factor() { return m_factor; }
/** Concatenates two uniform scaling */
inline UniformScaling operator*(const UniformScaling& other) const {
return UniformScaling(m_factor * other.factor());
}
/** Concatenates a uniform scaling and a translation */
template <int Dim>
inline Transform<Scalar, Dim, Affine> operator*(const Translation<Scalar, Dim>& t) const;
/** Concatenates a uniform scaling and an affine transformation */
template <int Dim, int Mode, int Options>
inline typename internal::uniformscaling_times_affine_returntype<Scalar, Dim, Mode>::type operator*(
const Transform<Scalar, Dim, Mode, Options>& t) const {
typename internal::uniformscaling_times_affine_returntype<Scalar, Dim, Mode>::type res = t;
res.prescale(factor());
return res;
}
/** Concatenates a uniform scaling and a linear transformation matrix */
// TODO returns an expression
template <typename Derived>
inline typename Eigen::internal::plain_matrix_type<Derived>::type operator*(const MatrixBase<Derived>& other) const {
return other * m_factor;
}
template <typename Derived, int Dim>
inline Matrix<Scalar, Dim, Dim> operator*(const RotationBase<Derived, Dim>& r) const {
return r.toRotationMatrix() * m_factor;
}
/** \returns the inverse scaling */
inline UniformScaling inverse() const { return UniformScaling(Scalar(1) / m_factor); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template <typename NewScalarType>
inline UniformScaling<NewScalarType> cast() const {
return UniformScaling<NewScalarType>(NewScalarType(m_factor));
}
/** Copy constructor with scalar type conversion */
template <typename OtherScalarType>
inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) {
m_factor = Scalar(other.factor());
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const UniformScaling& other,
const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const {
return internal::isApprox(m_factor, other.factor(), prec);
}
};
/** \addtogroup Geometry_Module */
//@{
/** Concatenates a linear transformation matrix and a uniform scaling
* \relates UniformScaling
*/
// NOTE this operator is defined in MatrixBase and not as a friend function
// of UniformScaling to fix an internal crash of Intel's ICC
template <typename Derived, typename Scalar>
EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived, Scalar, product)
operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s) {
return matrix.derived() * s.factor();
}
/** Constructs a uniform scaling from scale factor \a s */
inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
/** Constructs a uniform scaling from scale factor \a s */
inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
/** Constructs a uniform scaling from scale factor \a s */
template <typename RealScalar>
inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) {
return UniformScaling<std::complex<RealScalar> >(s);
}
/** Constructs a 2D axis aligned scaling */
template <typename Scalar>
inline DiagonalMatrix<Scalar, 2> Scaling(const Scalar& sx, const Scalar& sy) {
return DiagonalMatrix<Scalar, 2>(sx, sy);
}
/** Constructs a 3D axis aligned scaling */
template <typename Scalar>
inline DiagonalMatrix<Scalar, 3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) {
return DiagonalMatrix<Scalar, 3>(sx, sy, sz);
}
/** Constructs an axis aligned scaling expression from vector expression \a coeffs
* This is an alias for coeffs.asDiagonal()
*/
template <typename Derived>
inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) {
return coeffs.asDiagonal();
}
/** Constructs an axis aligned scaling expression from vector \a coeffs when passed as an rvalue reference */
template <typename Derived>
inline typename DiagonalWrapper<const Derived>::PlainObject Scaling(MatrixBase<Derived>&& coeffs) {
return typename DiagonalWrapper<const Derived>::PlainObject(std::move(coeffs.derived()));
}
/** \deprecated */
typedef DiagonalMatrix<float, 2> AlignedScaling2f;
/** \deprecated */
typedef DiagonalMatrix<double, 2> AlignedScaling2d;
/** \deprecated */
typedef DiagonalMatrix<float, 3> AlignedScaling3f;
/** \deprecated */
typedef DiagonalMatrix<double, 3> AlignedScaling3d;
//@}
template <typename Scalar>
template <int Dim>
inline Transform<Scalar, Dim, Affine> UniformScaling<Scalar>::operator*(const Translation<Scalar, Dim>& t) const {
Transform<Scalar, Dim, Affine> res;
res.matrix().setZero();
res.linear().diagonal().fill(factor());
res.translation() = factor() * t.vector();
res(Dim, Dim) = Scalar(1);
return res;
}
} // end namespace Eigen
#endif // EIGEN_SCALING_H