| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SCALING_H |
| #define EIGEN_SCALING_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class UniformScaling |
| * |
| * \brief Represents a generic uniform scaling transformation |
| * |
| * \tparam Scalar_ the scalar type, i.e., the type of the coefficients. |
| * |
| * This class represent a uniform scaling transformation. It is the return |
| * type of Scaling(Scalar), and most of the time this is the only way it |
| * is used. In particular, this class is not aimed to be used to store a scaling transformation, |
| * but rather to make easier the constructions and updates of Transform objects. |
| * |
| * To represent an axis aligned scaling, use the DiagonalMatrix class. |
| * |
| * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform |
| */ |
| |
| namespace internal { |
| // This helper helps nvcc+MSVC to properly parse this file. |
| // See bug 1412. |
| template <typename Scalar, int Dim, int Mode> |
| struct uniformscaling_times_affine_returntype { |
| enum { NewMode = int(Mode) == int(Isometry) ? Affine : Mode }; |
| typedef Transform<Scalar, Dim, NewMode> type; |
| }; |
| } // namespace internal |
| |
| template <typename Scalar_> |
| class UniformScaling { |
| public: |
| /** the scalar type of the coefficients */ |
| typedef Scalar_ Scalar; |
| |
| protected: |
| Scalar m_factor; |
| |
| public: |
| /** Default constructor without initialization. */ |
| UniformScaling() {} |
| /** Constructs and initialize a uniform scaling transformation */ |
| explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} |
| |
| inline const Scalar& factor() const { return m_factor; } |
| inline Scalar& factor() { return m_factor; } |
| |
| /** Concatenates two uniform scaling */ |
| inline UniformScaling operator*(const UniformScaling& other) const { |
| return UniformScaling(m_factor * other.factor()); |
| } |
| |
| /** Concatenates a uniform scaling and a translation */ |
| template <int Dim> |
| inline Transform<Scalar, Dim, Affine> operator*(const Translation<Scalar, Dim>& t) const; |
| |
| /** Concatenates a uniform scaling and an affine transformation */ |
| template <int Dim, int Mode, int Options> |
| inline typename internal::uniformscaling_times_affine_returntype<Scalar, Dim, Mode>::type operator*( |
| const Transform<Scalar, Dim, Mode, Options>& t) const { |
| typename internal::uniformscaling_times_affine_returntype<Scalar, Dim, Mode>::type res = t; |
| res.prescale(factor()); |
| return res; |
| } |
| |
| /** Concatenates a uniform scaling and a linear transformation matrix */ |
| // TODO returns an expression |
| template <typename Derived> |
| inline typename Eigen::internal::plain_matrix_type<Derived>::type operator*(const MatrixBase<Derived>& other) const { |
| return other * m_factor; |
| } |
| |
| template <typename Derived, int Dim> |
| inline Matrix<Scalar, Dim, Dim> operator*(const RotationBase<Derived, Dim>& r) const { |
| return r.toRotationMatrix() * m_factor; |
| } |
| |
| /** \returns the inverse scaling */ |
| inline UniformScaling inverse() const { return UniformScaling(Scalar(1) / m_factor); } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template <typename NewScalarType> |
| inline UniformScaling<NewScalarType> cast() const { |
| return UniformScaling<NewScalarType>(NewScalarType(m_factor)); |
| } |
| |
| /** Copy constructor with scalar type conversion */ |
| template <typename OtherScalarType> |
| inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) { |
| m_factor = Scalar(other.factor()); |
| } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const UniformScaling& other, |
| const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const { |
| return internal::isApprox(m_factor, other.factor(), prec); |
| } |
| }; |
| |
| /** \addtogroup Geometry_Module */ |
| //@{ |
| |
| /** Concatenates a linear transformation matrix and a uniform scaling |
| * \relates UniformScaling |
| */ |
| // NOTE this operator is defined in MatrixBase and not as a friend function |
| // of UniformScaling to fix an internal crash of Intel's ICC |
| template <typename Derived, typename Scalar> |
| EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived, Scalar, product) |
| operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s) { |
| return matrix.derived() * s.factor(); |
| } |
| |
| /** Constructs a uniform scaling from scale factor \a s */ |
| inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } |
| /** Constructs a uniform scaling from scale factor \a s */ |
| inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } |
| /** Constructs a uniform scaling from scale factor \a s */ |
| template <typename RealScalar> |
| inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) { |
| return UniformScaling<std::complex<RealScalar> >(s); |
| } |
| |
| /** Constructs a 2D axis aligned scaling */ |
| template <typename Scalar> |
| inline DiagonalMatrix<Scalar, 2> Scaling(const Scalar& sx, const Scalar& sy) { |
| return DiagonalMatrix<Scalar, 2>(sx, sy); |
| } |
| /** Constructs a 3D axis aligned scaling */ |
| template <typename Scalar> |
| inline DiagonalMatrix<Scalar, 3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) { |
| return DiagonalMatrix<Scalar, 3>(sx, sy, sz); |
| } |
| |
| /** Constructs an axis aligned scaling expression from vector expression \a coeffs |
| * This is an alias for coeffs.asDiagonal() |
| */ |
| template <typename Derived> |
| inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) { |
| return coeffs.asDiagonal(); |
| } |
| |
| /** Constructs an axis aligned scaling expression from vector \a coeffs when passed as an rvalue reference */ |
| template <typename Derived> |
| inline typename DiagonalWrapper<const Derived>::PlainObject Scaling(MatrixBase<Derived>&& coeffs) { |
| return typename DiagonalWrapper<const Derived>::PlainObject(std::move(coeffs.derived())); |
| } |
| |
| /** \deprecated */ |
| typedef DiagonalMatrix<float, 2> AlignedScaling2f; |
| /** \deprecated */ |
| typedef DiagonalMatrix<double, 2> AlignedScaling2d; |
| /** \deprecated */ |
| typedef DiagonalMatrix<float, 3> AlignedScaling3f; |
| /** \deprecated */ |
| typedef DiagonalMatrix<double, 3> AlignedScaling3d; |
| //@} |
| |
| template <typename Scalar> |
| template <int Dim> |
| inline Transform<Scalar, Dim, Affine> UniformScaling<Scalar>::operator*(const Translation<Scalar, Dim>& t) const { |
| Transform<Scalar, Dim, Affine> res; |
| res.matrix().setZero(); |
| res.linear().diagonal().fill(factor()); |
| res.translation() = factor() * t.vector(); |
| res(Dim, Dim) = Scalar(1); |
| return res; |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SCALING_H |