| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_TRANSFORM_H |
| #define EIGEN_TRANSFORM_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename Transform> |
| struct transform_traits { |
| enum { |
| Dim = Transform::Dim, |
| HDim = Transform::HDim, |
| Mode = Transform::Mode, |
| IsProjective = (int(Mode) == int(Projective)) |
| }; |
| }; |
| |
| template <typename TransformType, typename MatrixType, |
| int Case = transform_traits<TransformType>::IsProjective ? 0 |
| : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1 |
| : 2, |
| int RhsCols = MatrixType::ColsAtCompileTime> |
| struct transform_right_product_impl; |
| |
| template <typename Other, int Mode, int Options, int Dim, int HDim, int OtherRows = Other::RowsAtCompileTime, |
| int OtherCols = Other::ColsAtCompileTime> |
| struct transform_left_product_impl; |
| |
| template <typename Lhs, typename Rhs, |
| bool AnyProjective = transform_traits<Lhs>::IsProjective || transform_traits<Rhs>::IsProjective> |
| struct transform_transform_product_impl; |
| |
| template <typename Other, int Mode, int Options, int Dim, int HDim, int OtherRows = Other::RowsAtCompileTime, |
| int OtherCols = Other::ColsAtCompileTime> |
| struct transform_construct_from_matrix; |
| |
| template <typename TransformType> |
| struct transform_take_affine_part; |
| |
| template <typename Scalar_, int Dim_, int Mode_, int Options_> |
| struct traits<Transform<Scalar_, Dim_, Mode_, Options_> > { |
| typedef Scalar_ Scalar; |
| typedef Eigen::Index StorageIndex; |
| typedef Dense StorageKind; |
| enum { |
| Dim1 = Dim_ == Dynamic ? Dim_ : Dim_ + 1, |
| RowsAtCompileTime = Mode_ == Projective ? Dim1 : Dim_, |
| ColsAtCompileTime = Dim1, |
| MaxRowsAtCompileTime = RowsAtCompileTime, |
| MaxColsAtCompileTime = ColsAtCompileTime, |
| Flags = 0 |
| }; |
| }; |
| |
| template <int Mode> |
| struct transform_make_affine; |
| |
| } // end namespace internal |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Transform |
| * |
| * \brief Represents an homogeneous transformation in a N dimensional space |
| * |
| * \tparam Scalar_ the scalar type, i.e., the type of the coefficients |
| * \tparam Dim_ the dimension of the space |
| * \tparam Mode_ the type of the transformation. Can be: |
| * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, |
| * where the last row is assumed to be [0 ... 0 1]. |
| * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. |
| * - #Projective: the transformation is stored as a (Dim+1)^2 matrix |
| * without any assumption. |
| * - #Isometry: same as #Affine with the additional assumption that |
| * the linear part represents a rotation. This assumption is exploited |
| * to speed up some functions such as inverse() and rotation(). |
| * \tparam Options_ has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. |
| * These Options are passed directly to the underlying matrix type. |
| * |
| * The homography is internally represented and stored by a matrix which |
| * is available through the matrix() method. To understand the behavior of |
| * this class you have to think a Transform object as its internal |
| * matrix representation. The chosen convention is right multiply: |
| * |
| * \code v' = T * v \endcode |
| * |
| * Therefore, an affine transformation matrix M is shaped like this: |
| * |
| * \f$ \left( \begin{array}{cc} |
| * linear & translation\\ |
| * 0 ... 0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * Note that for a projective transformation the last row can be anything, |
| * and then the interpretation of different parts might be slightly different. |
| * |
| * However, unlike a plain matrix, the Transform class provides many features |
| * simplifying both its assembly and usage. In particular, it can be composed |
| * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) |
| * and can be directly used to transform implicit homogeneous vectors. All these |
| * operations are handled via the operator*. For the composition of transformations, |
| * its principle consists to first convert the right/left hand sides of the product |
| * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. |
| * Of course, internally, operator* tries to perform the minimal number of operations |
| * according to the nature of each terms. Likewise, when applying the transform |
| * to points, the latters are automatically promoted to homogeneous vectors |
| * before doing the matrix product. The conventions to homogeneous representations |
| * are performed as follow: |
| * |
| * \b Translation t (Dim)x(1): |
| * \f$ \left( \begin{array}{cc} |
| * I & t \\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Rotation R (Dim)x(Dim): |
| * \f$ \left( \begin{array}{cc} |
| * R & 0\\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| *<!-- |
| * \b Linear \b Matrix L (Dim)x(Dim): |
| * \f$ \left( \begin{array}{cc} |
| * L & 0\\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Affine \b Matrix A (Dim)x(Dim+1): |
| * \f$ \left( \begin{array}{c} |
| * A\\ |
| * 0\,...\,0\,1 |
| * \end{array} \right) \f$ |
| *--> |
| * \b Scaling \b DiagonalMatrix S (Dim)x(Dim): |
| * \f$ \left( \begin{array}{cc} |
| * S & 0\\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Column \b point v (Dim)x(1): |
| * \f$ \left( \begin{array}{c} |
| * v\\ |
| * 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Set \b of \b column \b points V1...Vn (Dim)x(n): |
| * \f$ \left( \begin{array}{ccc} |
| * v_1 & ... & v_n\\ |
| * 1 & ... & 1 |
| * \end{array} \right) \f$ |
| * |
| * The concatenation of a Transform object with any kind of other transformation |
| * always returns a Transform object. |
| * |
| * A little exception to the "as pure matrix product" rule is the case of the |
| * transformation of non homogeneous vectors by an affine transformation. In |
| * that case the last matrix row can be ignored, and the product returns non |
| * homogeneous vectors. |
| * |
| * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, |
| * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. |
| * The solution is either to use a Dim x Dynamic matrix or explicitly request a |
| * vector transformation by making the vector homogeneous: |
| * \code |
| * m' = T * m.colwise().homogeneous(); |
| * \endcode |
| * Note that there is zero overhead. |
| * |
| * Conversion methods from/to Qt's QMatrix and QTransform are available if the |
| * preprocessor token EIGEN_QT_SUPPORT is defined. |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. |
| * |
| * \sa class Matrix, class Quaternion |
| */ |
| template <typename Scalar_, int Dim_, int Mode_, int Options_> |
| class Transform { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_, |
| Dim_ == Dynamic ? Dynamic : (Dim_ + 1) * (Dim_ + 1)) |
| enum { |
| Mode = Mode_, |
| Options = Options_, |
| Dim = Dim_, ///< space dimension in which the transformation holds |
| HDim = Dim_ + 1, ///< size of a respective homogeneous vector |
| Rows = int(Mode) == (AffineCompact) ? Dim : HDim |
| }; |
| /** the scalar type of the coefficients */ |
| typedef Scalar_ Scalar; |
| typedef Eigen::Index StorageIndex; |
| typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| /** type of the matrix used to represent the transformation */ |
| typedef typename internal::make_proper_matrix_type<Scalar, Rows, HDim, Options>::type MatrixType; |
| /** constified MatrixType */ |
| typedef const MatrixType ConstMatrixType; |
| /** type of the matrix used to represent the linear part of the transformation */ |
| typedef Matrix<Scalar, Dim, Dim, Options> LinearMatrixType; |
| /** type of read/write reference to the linear part of the transformation */ |
| typedef Block<MatrixType, Dim, Dim, int(Mode) == (AffineCompact) && (int(Options) & RowMajor) == 0> LinearPart; |
| /** type of read reference to the linear part of the transformation */ |
| typedef const Block<ConstMatrixType, Dim, Dim, int(Mode) == (AffineCompact) && (int(Options) & RowMajor) == 0> |
| ConstLinearPart; |
| /** type of read/write reference to the affine part of the transformation */ |
| typedef std::conditional_t<int(Mode) == int(AffineCompact), MatrixType&, Block<MatrixType, Dim, HDim> > AffinePart; |
| /** type of read reference to the affine part of the transformation */ |
| typedef std::conditional_t<int(Mode) == int(AffineCompact), const MatrixType&, |
| const Block<const MatrixType, Dim, HDim> > |
| ConstAffinePart; |
| /** type of a vector */ |
| typedef Matrix<Scalar, Dim, 1> VectorType; |
| /** type of a read/write reference to the translation part of the rotation */ |
| typedef Block<MatrixType, Dim, 1, !(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart; |
| /** type of a read reference to the translation part of the rotation */ |
| typedef const Block<ConstMatrixType, Dim, 1, !(internal::traits<MatrixType>::Flags & RowMajorBit)> |
| ConstTranslationPart; |
| /** corresponding translation type */ |
| typedef Translation<Scalar, Dim> TranslationType; |
| |
| // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 |
| enum { TransformTimeDiagonalMode = ((Mode == int(Isometry)) ? Affine : int(Mode)) }; |
| /** The return type of the product between a diagonal matrix and a transform */ |
| typedef Transform<Scalar, Dim, TransformTimeDiagonalMode> TransformTimeDiagonalReturnType; |
| |
| protected: |
| MatrixType m_matrix; |
| |
| public: |
| /** Default constructor without initialization of the meaningful coefficients. |
| * If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1] */ |
| EIGEN_DEVICE_FUNC inline Transform() { |
| check_template_params(); |
| internal::transform_make_affine<(int(Mode) == Affine || int(Mode) == Isometry) ? Affine : AffineCompact>::run( |
| m_matrix); |
| } |
| |
| EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t) { |
| check_template_params(); |
| *this = t; |
| } |
| EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s) { |
| check_template_params(); |
| *this = s; |
| } |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r) { |
| check_template_params(); |
| *this = r; |
| } |
| |
| typedef internal::transform_take_affine_part<Transform> take_affine_part; |
| |
| /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other) { |
| EIGEN_STATIC_ASSERT( |
| (internal::is_same<Scalar, typename OtherDerived::Scalar>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); |
| |
| check_template_params(); |
| internal::transform_construct_from_matrix<OtherDerived, Mode, Options, Dim, HDim>::run(this, other.derived()); |
| } |
| |
| /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other) { |
| EIGEN_STATIC_ASSERT( |
| (internal::is_same<Scalar, typename OtherDerived::Scalar>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); |
| |
| internal::transform_construct_from_matrix<OtherDerived, Mode, Options, Dim, HDim>::run(this, other.derived()); |
| return *this; |
| } |
| |
| template <int OtherOptions> |
| EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar, Dim, Mode, OtherOptions>& other) { |
| check_template_params(); |
| // only the options change, we can directly copy the matrices |
| m_matrix = other.matrix(); |
| } |
| |
| template <int OtherMode, int OtherOptions> |
| EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar, Dim, OtherMode, OtherOptions>& other) { |
| check_template_params(); |
| // prevent conversions as: |
| // Affine | AffineCompact | Isometry = Projective |
| EIGEN_STATIC_ASSERT(internal::check_implication(OtherMode == int(Projective), Mode == int(Projective)), |
| YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) |
| |
| // prevent conversions as: |
| // Isometry = Affine | AffineCompact |
| EIGEN_STATIC_ASSERT( |
| internal::check_implication(OtherMode == int(Affine) || OtherMode == int(AffineCompact), Mode != int(Isometry)), |
| YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) |
| |
| enum { |
| ModeIsAffineCompact = Mode == int(AffineCompact), |
| OtherModeIsAffineCompact = OtherMode == int(AffineCompact) |
| }; |
| |
| if (EIGEN_CONST_CONDITIONAL(ModeIsAffineCompact == OtherModeIsAffineCompact)) { |
| // We need the block expression because the code is compiled for all |
| // combinations of transformations and will trigger a compile time error |
| // if one tries to assign the matrices directly |
| m_matrix.template block<Dim, Dim + 1>(0, 0) = other.matrix().template block<Dim, Dim + 1>(0, 0); |
| makeAffine(); |
| } else if (EIGEN_CONST_CONDITIONAL(OtherModeIsAffineCompact)) { |
| typedef typename Transform<Scalar, Dim, OtherMode, OtherOptions>::MatrixType OtherMatrixType; |
| internal::transform_construct_from_matrix<OtherMatrixType, Mode, Options, Dim, HDim>::run(this, other.matrix()); |
| } else { |
| // here we know that Mode == AffineCompact and OtherMode != AffineCompact. |
| // if OtherMode were Projective, the static assert above would already have caught it. |
| // So the only possibility is that OtherMode == Affine |
| linear() = other.linear(); |
| translation() = other.translation(); |
| } |
| } |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other) { |
| check_template_params(); |
| other.evalTo(*this); |
| } |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other) { |
| other.evalTo(*this); |
| return *this; |
| } |
| |
| #ifdef EIGEN_QT_SUPPORT |
| #if (QT_VERSION < QT_VERSION_CHECK(6, 0, 0)) |
| inline Transform(const QMatrix& other); |
| inline Transform& operator=(const QMatrix& other); |
| inline QMatrix toQMatrix(void) const; |
| #endif |
| inline Transform(const QTransform& other); |
| inline Transform& operator=(const QTransform& other); |
| inline QTransform toQTransform(void) const; |
| #endif |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { |
| return int(Mode) == int(Projective) ? m_matrix.cols() : (m_matrix.cols() - 1); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } |
| |
| /** shortcut for m_matrix(row,col); |
| * \sa MatrixBase::operator(Index,Index) const */ |
| EIGEN_DEVICE_FUNC inline Scalar operator()(Index row, Index col) const { return m_matrix(row, col); } |
| /** shortcut for m_matrix(row,col); |
| * \sa MatrixBase::operator(Index,Index) */ |
| EIGEN_DEVICE_FUNC inline Scalar& operator()(Index row, Index col) { return m_matrix(row, col); } |
| |
| /** \returns a read-only expression of the transformation matrix */ |
| EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; } |
| /** \returns a writable expression of the transformation matrix */ |
| EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; } |
| |
| /** \returns a read-only expression of the linear part of the transformation */ |
| EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix, 0, 0); } |
| /** \returns a writable expression of the linear part of the transformation */ |
| EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix, 0, 0); } |
| |
| /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ |
| EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } |
| /** \returns a writable expression of the Dim x HDim affine part of the transformation */ |
| EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); } |
| |
| /** \returns a read-only expression of the translation vector of the transformation */ |
| EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix, 0, Dim); } |
| /** \returns a writable expression of the translation vector of the transformation */ |
| EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix, 0, Dim); } |
| |
| /** \returns an expression of the product between the transform \c *this and a matrix expression \a other. |
| * |
| * The right-hand-side \a other can be either: |
| * \li an homogeneous vector of size Dim+1, |
| * \li a set of homogeneous vectors of size Dim+1 x N, |
| * \li a transformation matrix of size Dim+1 x Dim+1. |
| * |
| * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be: |
| * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode), |
| * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + |
| * this->translation()\endcode), |
| * |
| * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other. |
| * |
| * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> |
| * type, or do your own cooking. |
| * |
| * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only: |
| * \code |
| * Affine3f A; |
| * Vector3f v1, v2; |
| * v2 = A.linear() * v1; |
| * \endcode |
| * |
| */ |
| // note: this function is defined here because some compilers cannot find the respective declaration |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, |
| OtherDerived>::ResultType |
| operator*(const EigenBase<OtherDerived>& other) const { |
| return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this, other.derived()); |
| } |
| |
| /** \returns the product expression of a transformation matrix \a a times a transform \a b |
| * |
| * The left hand side \a other can be either: |
| * \li a linear transformation matrix of size Dim x Dim, |
| * \li an affine transformation matrix of size Dim x Dim+1, |
| * \li a general transformation matrix of size Dim+1 x Dim+1. |
| */ |
| template <typename OtherDerived> |
| friend EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived, Mode, Options, |
| Dim_, Dim_ + 1>::ResultType |
| operator*(const EigenBase<OtherDerived>& a, const Transform& b) { |
| return internal::transform_left_product_impl<OtherDerived, Mode, Options, Dim, HDim>::run(a.derived(), b); |
| } |
| |
| /** \returns The product expression of a transform \a a times a diagonal matrix \a b |
| * |
| * The rhs diagonal matrix is interpreted as an affine scaling transformation. The |
| * product results in a Transform of the same type (mode) as the lhs only if the lhs |
| * mode is no isometry. In that case, the returned transform is an affinity. |
| */ |
| template <typename DiagonalDerived> |
| EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType operator*( |
| const DiagonalBase<DiagonalDerived>& b) const { |
| TransformTimeDiagonalReturnType res(*this); |
| res.linearExt() *= b; |
| return res; |
| } |
| |
| /** \returns The product expression of a diagonal matrix \a a times a transform \a b |
| * |
| * The lhs diagonal matrix is interpreted as an affine scaling transformation. The |
| * product results in a Transform of the same type (mode) as the lhs only if the lhs |
| * mode is no isometry. In that case, the returned transform is an affinity. |
| */ |
| template <typename DiagonalDerived> |
| EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType operator*(const DiagonalBase<DiagonalDerived>& a, |
| const Transform& b) { |
| TransformTimeDiagonalReturnType res; |
| res.linear().noalias() = a * b.linear(); |
| res.translation().noalias() = a * b.translation(); |
| if (EIGEN_CONST_CONDITIONAL(Mode != int(AffineCompact))) res.matrix().row(Dim) = b.matrix().row(Dim); |
| return res; |
| } |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { |
| return *this = *this * other; |
| } |
| |
| /** Concatenates two transformations */ |
| EIGEN_DEVICE_FUNC inline const Transform operator*(const Transform& other) const { |
| return internal::transform_transform_product_impl<Transform, Transform>::run(*this, other); |
| } |
| |
| #if EIGEN_COMP_ICC |
| private: |
| // this intermediate structure permits to workaround a bug in ICC 11: |
| // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0> |
| // (const Eigen::Transform<double, 3, 2, 0> &) const" |
| // (the meaning of a name may have changed since the template declaration -- the type of the template is: |
| // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>, |
| // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, |
| // Options> &) const") |
| // |
| template <int OtherMode, int OtherOptions> |
| struct icc_11_workaround { |
| typedef internal::transform_transform_product_impl<Transform, Transform<Scalar, Dim, OtherMode, OtherOptions> > |
| ProductType; |
| typedef typename ProductType::ResultType ResultType; |
| }; |
| |
| public: |
| /** Concatenates two different transformations */ |
| template <int OtherMode, int OtherOptions> |
| inline typename icc_11_workaround<OtherMode, OtherOptions>::ResultType operator*( |
| const Transform<Scalar, Dim, OtherMode, OtherOptions>& other) const { |
| typedef typename icc_11_workaround<OtherMode, OtherOptions>::ProductType ProductType; |
| return ProductType::run(*this, other); |
| } |
| #else |
| /** Concatenates two different transformations */ |
| template <int OtherMode, int OtherOptions> |
| EIGEN_DEVICE_FUNC inline |
| typename internal::transform_transform_product_impl<Transform, |
| Transform<Scalar, Dim, OtherMode, OtherOptions> >::ResultType |
| operator*(const Transform<Scalar, Dim, OtherMode, OtherOptions>& other) const { |
| return internal::transform_transform_product_impl<Transform, Transform<Scalar, Dim, OtherMode, OtherOptions> >::run( |
| *this, other); |
| } |
| #endif |
| |
| /** \sa MatrixBase::setIdentity() */ |
| EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); } |
| |
| /** |
| * \brief Returns an identity transformation. |
| * \todo In the future this function should be returning a Transform expression. |
| */ |
| EIGEN_DEVICE_FUNC static const Transform Identity() { return Transform(MatrixType::Identity()); } |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline Transform& scale(const MatrixBase<OtherDerived>& other); |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline Transform& prescale(const MatrixBase<OtherDerived>& other); |
| |
| EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s); |
| EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s); |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline Transform& translate(const MatrixBase<OtherDerived>& other); |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline Transform& pretranslate(const MatrixBase<OtherDerived>& other); |
| |
| template <typename RotationType> |
| EIGEN_DEVICE_FUNC inline Transform& rotate(const RotationType& rotation); |
| |
| template <typename RotationType> |
| EIGEN_DEVICE_FUNC inline Transform& prerotate(const RotationType& rotation); |
| |
| EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy); |
| EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy); |
| |
| EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t); |
| |
| EIGEN_DEVICE_FUNC inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } |
| |
| EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const; |
| |
| EIGEN_DEVICE_FUNC inline Transform& operator=(const UniformScaling<Scalar>& t); |
| |
| EIGEN_DEVICE_FUNC inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } |
| |
| EIGEN_DEVICE_FUNC inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const { |
| TransformTimeDiagonalReturnType res = *this; |
| res.scale(s.factor()); |
| return res; |
| } |
| |
| EIGEN_DEVICE_FUNC inline Transform& operator*=(const DiagonalMatrix<Scalar, Dim>& s) { |
| linearExt() *= s; |
| return *this; |
| } |
| |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived, Dim>& r); |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived, Dim>& r) { |
| return rotate(r.toRotationMatrix()); |
| } |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived, Dim>& r) const; |
| |
| typedef std::conditional_t<int(Mode) == Isometry, ConstLinearPart, const LinearMatrixType> RotationReturnType; |
| EIGEN_DEVICE_FUNC RotationReturnType rotation() const; |
| |
| template <typename RotationMatrixType, typename ScalingMatrixType> |
| EIGEN_DEVICE_FUNC void computeRotationScaling(RotationMatrixType* rotation, ScalingMatrixType* scaling) const; |
| template <typename ScalingMatrixType, typename RotationMatrixType> |
| EIGEN_DEVICE_FUNC void computeScalingRotation(ScalingMatrixType* scaling, RotationMatrixType* rotation) const; |
| |
| template <typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| EIGEN_DEVICE_FUNC Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived>& position, |
| const OrientationType& orientation, |
| const MatrixBase<ScaleDerived>& scale); |
| |
| EIGEN_DEVICE_FUNC inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; |
| |
| /** \returns a const pointer to the column major internal matrix */ |
| EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); } |
| /** \returns a non-const pointer to the column major internal matrix */ |
| EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template <typename NewScalarType> |
| EIGEN_DEVICE_FUNC inline |
| typename internal::cast_return_type<Transform, Transform<NewScalarType, Dim, Mode, Options> >::type |
| cast() const { |
| return typename internal::cast_return_type<Transform, Transform<NewScalarType, Dim, Mode, Options> >::type(*this); |
| } |
| |
| /** Copy constructor with scalar type conversion */ |
| template <typename OtherScalarType> |
| EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType, Dim, Mode, Options>& other) { |
| check_template_params(); |
| m_matrix = other.matrix().template cast<Scalar>(); |
| } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = |
| NumTraits<Scalar>::dummy_precision()) const { |
| return m_matrix.isApprox(other.m_matrix, prec); |
| } |
| |
| /** Sets the last row to [0 ... 0 1] |
| */ |
| EIGEN_DEVICE_FUNC void makeAffine() { internal::transform_make_affine<int(Mode)>::run(m_matrix); } |
| |
| /** \internal |
| * \returns the Dim x Dim linear part if the transformation is affine, |
| * and the HDim x Dim part for projective transformations. |
| */ |
| EIGEN_DEVICE_FUNC inline Block<MatrixType, int(Mode) == int(Projective) ? HDim : Dim, Dim> linearExt() { |
| return m_matrix.template block < int(Mode) == int(Projective) ? HDim : Dim, Dim > (0, 0); |
| } |
| /** \internal |
| * \returns the Dim x Dim linear part if the transformation is affine, |
| * and the HDim x Dim part for projective transformations. |
| */ |
| EIGEN_DEVICE_FUNC inline const Block<MatrixType, int(Mode) == int(Projective) ? HDim : Dim, Dim> linearExt() const { |
| return m_matrix.template block < int(Mode) == int(Projective) ? HDim : Dim, Dim > (0, 0); |
| } |
| |
| /** \internal |
| * \returns the translation part if the transformation is affine, |
| * and the last column for projective transformations. |
| */ |
| EIGEN_DEVICE_FUNC inline Block<MatrixType, int(Mode) == int(Projective) ? HDim : Dim, 1> translationExt() { |
| return m_matrix.template block < int(Mode) == int(Projective) ? HDim : Dim, 1 > (0, Dim); |
| } |
| /** \internal |
| * \returns the translation part if the transformation is affine, |
| * and the last column for projective transformations. |
| */ |
| EIGEN_DEVICE_FUNC inline const Block<MatrixType, int(Mode) == int(Projective) ? HDim : Dim, 1> translationExt() |
| const { |
| return m_matrix.template block < int(Mode) == int(Projective) ? HDim : Dim, 1 > (0, Dim); |
| } |
| |
| #ifdef EIGEN_TRANSFORM_PLUGIN |
| #include EIGEN_TRANSFORM_PLUGIN |
| #endif |
| |
| protected: |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params() { |
| EIGEN_STATIC_ASSERT((Options & (DontAlign | RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| } |
| #endif |
| }; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float, 2, Isometry> Isometry2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float, 3, Isometry> Isometry3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double, 2, Isometry> Isometry2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double, 3, Isometry> Isometry3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float, 2, Affine> Affine2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float, 3, Affine> Affine3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double, 2, Affine> Affine2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double, 3, Affine> Affine3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float, 2, AffineCompact> AffineCompact2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float, 3, AffineCompact> AffineCompact3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double, 2, AffineCompact> AffineCompact2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double, 3, AffineCompact> AffineCompact3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float, 2, Projective> Projective2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float, 3, Projective> Projective3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double, 2, Projective> Projective2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double, 3, Projective> Projective3d; |
| |
| /************************** |
| *** Optional QT support *** |
| **************************/ |
| |
| #ifdef EIGEN_QT_SUPPORT |
| |
| #if (QT_VERSION < QT_VERSION_CHECK(6, 0, 0)) |
| /** Initializes \c *this from a QMatrix assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| Transform<Scalar, Dim, Mode, Options>::Transform(const QMatrix& other) { |
| check_template_params(); |
| *this = other; |
| } |
| |
| /** Set \c *this from a QMatrix assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=(const QMatrix& other) { |
| EIGEN_STATIC_ASSERT(Dim == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) |
| m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(); |
| else |
| m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(), 0, 0, 1; |
| return *this; |
| } |
| |
| /** \returns a QMatrix from \c *this assuming the dimension is 2. |
| * |
| * \warning this conversion might loss data if \c *this is not affine |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| QMatrix Transform<Scalar, Dim, Mode, Options>::toQMatrix(void) const { |
| check_template_params(); |
| EIGEN_STATIC_ASSERT(Dim == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return QMatrix(m_matrix.coeff(0, 0), m_matrix.coeff(1, 0), m_matrix.coeff(0, 1), m_matrix.coeff(1, 1), |
| m_matrix.coeff(0, 2), m_matrix.coeff(1, 2)); |
| } |
| #endif |
| |
| /** Initializes \c *this from a QTransform assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| Transform<Scalar, Dim, Mode, Options>::Transform(const QTransform& other) { |
| check_template_params(); |
| *this = other; |
| } |
| |
| /** Set \c *this from a QTransform assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=(const QTransform& other) { |
| check_template_params(); |
| EIGEN_STATIC_ASSERT(Dim == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) |
| m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(); |
| else |
| m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(), other.m13(), other.m23(), |
| other.m33(); |
| return *this; |
| } |
| |
| /** \returns a QTransform from \c *this assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| QTransform Transform<Scalar, Dim, Mode, Options>::toQTransform(void) const { |
| EIGEN_STATIC_ASSERT(Dim == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) |
| return QTransform(m_matrix.coeff(0, 0), m_matrix.coeff(1, 0), m_matrix.coeff(0, 1), m_matrix.coeff(1, 1), |
| m_matrix.coeff(0, 2), m_matrix.coeff(1, 2)); |
| else |
| return QTransform(m_matrix.coeff(0, 0), m_matrix.coeff(1, 0), m_matrix.coeff(2, 0), m_matrix.coeff(0, 1), |
| m_matrix.coeff(1, 1), m_matrix.coeff(2, 1), m_matrix.coeff(0, 2), m_matrix.coeff(1, 2), |
| m_matrix.coeff(2, 2)); |
| } |
| #endif |
| |
| /********************* |
| *** Procedural API *** |
| *********************/ |
| |
| /** Applies on the right the non uniform scale transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \sa prescale() |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::scale( |
| const MatrixBase<OtherDerived>& other) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, int(Dim)) |
| EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| linearExt().noalias() = (linearExt() * other.asDiagonal()); |
| return *this; |
| } |
| |
| /** Applies on the right a uniform scale of a factor \a c to \c *this |
| * and returns a reference to \c *this. |
| * \sa prescale(Scalar) |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::scale( |
| const Scalar& s) { |
| EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| linearExt() *= s; |
| return *this; |
| } |
| |
| /** Applies on the left the non uniform scale transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \sa scale() |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::prescale( |
| const MatrixBase<OtherDerived>& other) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, int(Dim)) |
| EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| affine().noalias() = (other.asDiagonal() * affine()); |
| return *this; |
| } |
| |
| /** Applies on the left a uniform scale of a factor \a c to \c *this |
| * and returns a reference to \c *this. |
| * \sa scale(Scalar) |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::prescale( |
| const Scalar& s) { |
| EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| m_matrix.template topRows<Dim>() *= s; |
| return *this; |
| } |
| |
| /** Applies on the right the translation matrix represented by the vector \a other |
| * to \c *this and returns a reference to \c *this. |
| * \sa pretranslate() |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::translate( |
| const MatrixBase<OtherDerived>& other) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, int(Dim)) |
| translationExt() += linearExt() * other; |
| return *this; |
| } |
| |
| /** Applies on the left the translation matrix represented by the vector \a other |
| * to \c *this and returns a reference to \c *this. |
| * \sa translate() |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::pretranslate( |
| const MatrixBase<OtherDerived>& other) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, int(Dim)) |
| if (EIGEN_CONST_CONDITIONAL(int(Mode) == int(Projective))) |
| affine() += other * m_matrix.row(Dim); |
| else |
| translation() += other; |
| return *this; |
| } |
| |
| /** Applies on the right the rotation represented by the rotation \a rotation |
| * to \c *this and returns a reference to \c *this. |
| * |
| * The template parameter \a RotationType is the type of the rotation which |
| * must be known by internal::toRotationMatrix<>. |
| * |
| * Natively supported types includes: |
| * - any scalar (2D), |
| * - a Dim x Dim matrix expression, |
| * - a Quaternion (3D), |
| * - a AngleAxis (3D) |
| * |
| * This mechanism is easily extendable to support user types such as Euler angles, |
| * or a pair of Quaternion for 4D rotations. |
| * |
| * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename RotationType> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::rotate( |
| const RotationType& rotation) { |
| linearExt() *= internal::toRotationMatrix<Scalar, Dim>(rotation); |
| return *this; |
| } |
| |
| /** Applies on the left the rotation represented by the rotation \a rotation |
| * to \c *this and returns a reference to \c *this. |
| * |
| * See rotate() for further details. |
| * |
| * \sa rotate() |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename RotationType> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::prerotate( |
| const RotationType& rotation) { |
| m_matrix.template block<Dim, HDim>(0, 0) = |
| internal::toRotationMatrix<Scalar, Dim>(rotation) * m_matrix.template block<Dim, HDim>(0, 0); |
| return *this; |
| } |
| |
| /** Applies on the right the shear transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \warning 2D only. |
| * \sa preshear() |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::shear( |
| const Scalar& sx, const Scalar& sy) { |
| EIGEN_STATIC_ASSERT(int(Dim) == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| VectorType tmp = linear().col(0) * sy + linear().col(1); |
| linear() << linear().col(0) + linear().col(1) * sx, tmp; |
| return *this; |
| } |
| |
| /** Applies on the left the shear transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \warning 2D only. |
| * \sa shear() |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::preshear( |
| const Scalar& sx, const Scalar& sy) { |
| EIGEN_STATIC_ASSERT(int(Dim) == 2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| EIGEN_STATIC_ASSERT(Mode != int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| m_matrix.template block<Dim, HDim>(0, 0) = |
| LinearMatrixType({{1, sy}, {sx, 1}}) * m_matrix.template block<Dim, HDim>(0, 0); |
| return *this; |
| } |
| |
| /****************************************************** |
| *** Scaling, Translation and Rotation compatibility *** |
| ******************************************************/ |
| |
| template <typename Scalar, int Dim, int Mode, int Options> |
| EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=( |
| const TranslationType& t) { |
| linear().setIdentity(); |
| translation() = t.vector(); |
| makeAffine(); |
| return *this; |
| } |
| |
| template <typename Scalar, int Dim, int Mode, int Options> |
| EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options> Transform<Scalar, Dim, Mode, Options>::operator*( |
| const TranslationType& t) const { |
| Transform res = *this; |
| res.translate(t.vector()); |
| return res; |
| } |
| |
| template <typename Scalar, int Dim, int Mode, int Options> |
| EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=( |
| const UniformScaling<Scalar>& s) { |
| m_matrix.setZero(); |
| linear().diagonal().fill(s.factor()); |
| makeAffine(); |
| return *this; |
| } |
| |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options>& Transform<Scalar, Dim, Mode, Options>::operator=( |
| const RotationBase<Derived, Dim>& r) { |
| linear() = internal::toRotationMatrix<Scalar, Dim>(r); |
| translation().setZero(); |
| makeAffine(); |
| return *this; |
| } |
| |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode, Options> Transform<Scalar, Dim, Mode, Options>::operator*( |
| const RotationBase<Derived, Dim>& r) const { |
| Transform res = *this; |
| res.rotate(r.derived()); |
| return res; |
| } |
| |
| /************************ |
| *** Special functions *** |
| ************************/ |
| |
| namespace internal { |
| template <int Mode> |
| struct transform_rotation_impl { |
| template <typename TransformType> |
| EIGEN_DEVICE_FUNC static inline const typename TransformType::LinearMatrixType run(const TransformType& t) { |
| typedef typename TransformType::LinearMatrixType LinearMatrixType; |
| LinearMatrixType result; |
| t.computeRotationScaling(&result, (LinearMatrixType*)0); |
| return result; |
| } |
| }; |
| template <> |
| struct transform_rotation_impl<Isometry> { |
| template <typename TransformType> |
| EIGEN_DEVICE_FUNC static inline typename TransformType::ConstLinearPart run(const TransformType& t) { |
| return t.linear(); |
| } |
| }; |
| } // namespace internal |
| /** \returns the rotation part of the transformation |
| * |
| * If Mode==Isometry, then this method is an alias for linear(), |
| * otherwise it calls computeRotationScaling() to extract the rotation |
| * through a SVD decomposition. |
| * |
| * \svd_module |
| * |
| * \sa computeRotationScaling(), computeScalingRotation(), class SVD |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| EIGEN_DEVICE_FUNC typename Transform<Scalar, Dim, Mode, Options>::RotationReturnType |
| Transform<Scalar, Dim, Mode, Options>::rotation() const { |
| return internal::transform_rotation_impl<Mode>::run(*this); |
| } |
| |
| /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
| * not necessarily positive. |
| * |
| * If either pointer is zero, the corresponding computation is skipped. |
| * |
| * |
| * |
| * \svd_module |
| * |
| * \sa computeScalingRotation(), rotation(), class SVD |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename RotationMatrixType, typename ScalingMatrixType> |
| EIGEN_DEVICE_FUNC void Transform<Scalar, Dim, Mode, Options>::computeRotationScaling(RotationMatrixType* rotation, |
| ScalingMatrixType* scaling) const { |
| // Note that JacobiSVD is faster than BDCSVD for small matrices. |
| JacobiSVD<LinearMatrixType, ComputeFullU | ComputeFullV> svd(linear()); |
| |
| Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) |
| ? Scalar(-1) |
| : Scalar(1); // so x has absolute value 1 |
| VectorType sv(svd.singularValues()); |
| sv.coeffRef(Dim - 1) *= x; |
| if (scaling) *scaling = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); |
| if (rotation) { |
| LinearMatrixType m(svd.matrixU()); |
| m.col(Dim - 1) *= x; |
| *rotation = m * svd.matrixV().adjoint(); |
| } |
| } |
| |
| /** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being |
| * not necessarily positive. |
| * |
| * If either pointer is zero, the corresponding computation is skipped. |
| * |
| * |
| * |
| * \svd_module |
| * |
| * \sa computeRotationScaling(), rotation(), class SVD |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename ScalingMatrixType, typename RotationMatrixType> |
| EIGEN_DEVICE_FUNC void Transform<Scalar, Dim, Mode, Options>::computeScalingRotation( |
| ScalingMatrixType* scaling, RotationMatrixType* rotation) const { |
| // Note that JacobiSVD is faster than BDCSVD for small matrices. |
| JacobiSVD<LinearMatrixType, ComputeFullU | ComputeFullV> svd(linear()); |
| |
| Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) |
| ? Scalar(-1) |
| : Scalar(1); // so x has absolute value 1 |
| VectorType sv(svd.singularValues()); |
| sv.coeffRef(Dim - 1) *= x; |
| if (scaling) *scaling = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint(); |
| if (rotation) { |
| LinearMatrixType m(svd.matrixU()); |
| m.col(Dim - 1) *= x; |
| *rotation = m * svd.matrixV().adjoint(); |
| } |
| } |
| |
| /** Convenient method to set \c *this from a position, orientation and scale |
| * of a 3D object. |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| template <typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options>& |
| Transform<Scalar, Dim, Mode, Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived>& position, |
| const OrientationType& orientation, |
| const MatrixBase<ScaleDerived>& scale) { |
| linear() = internal::toRotationMatrix<Scalar, Dim>(orientation); |
| linear() *= scale.asDiagonal(); |
| translation() = position; |
| makeAffine(); |
| return *this; |
| } |
| |
| namespace internal { |
| |
| template <int Mode> |
| struct transform_make_affine { |
| template <typename MatrixType> |
| EIGEN_DEVICE_FUNC static void run(MatrixType& mat) { |
| static const int Dim = MatrixType::ColsAtCompileTime - 1; |
| mat.template block<1, Dim>(Dim, 0).setZero(); |
| mat.coeffRef(Dim, Dim) = typename MatrixType::Scalar(1); |
| } |
| }; |
| |
| template <> |
| struct transform_make_affine<AffineCompact> { |
| template <typename MatrixType> |
| EIGEN_DEVICE_FUNC static void run(MatrixType&) {} |
| }; |
| |
| // selector needed to avoid taking the inverse of a 3x4 matrix |
| template <typename TransformType, int Mode = TransformType::Mode> |
| struct projective_transform_inverse { |
| EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&) {} |
| }; |
| |
| template <typename TransformType> |
| struct projective_transform_inverse<TransformType, Projective> { |
| EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res) { |
| res.matrix() = m.matrix().inverse(); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** |
| * |
| * \returns the inverse transformation according to some given knowledge |
| * on \c *this. |
| * |
| * \param hint allows to optimize the inversion process when the transformation |
| * is known to be not a general transformation (optional). The possible values are: |
| * - #Projective if the transformation is not necessarily affine, i.e., if the |
| * last row is not guaranteed to be [0 ... 0 1] |
| * - #Affine if the last row can be assumed to be [0 ... 0 1] |
| * - #Isometry if the transformation is only a concatenations of translations |
| * and rotations. |
| * The default is the template class parameter \c Mode. |
| * |
| * \warning unless \a traits is always set to NoShear or NoScaling, this function |
| * requires the generic inverse method of MatrixBase defined in the LU module. If |
| * you forget to include this module, then you will get hard to debug linking errors. |
| * |
| * \sa MatrixBase::inverse() |
| */ |
| template <typename Scalar, int Dim, int Mode, int Options> |
| EIGEN_DEVICE_FUNC Transform<Scalar, Dim, Mode, Options> Transform<Scalar, Dim, Mode, Options>::inverse( |
| TransformTraits hint) const { |
| Transform res; |
| if (hint == Projective) { |
| internal::projective_transform_inverse<Transform>::run(*this, res); |
| } else { |
| if (hint == Isometry) { |
| res.matrix().template topLeftCorner<Dim, Dim>() = linear().transpose(); |
| } else if (hint & Affine) { |
| res.matrix().template topLeftCorner<Dim, Dim>() = linear().inverse(); |
| } else { |
| eigen_assert(false && "Invalid transform traits in Transform::Inverse"); |
| } |
| // translation and remaining parts |
| res.matrix().template topRightCorner<Dim, 1>() = -res.matrix().template topLeftCorner<Dim, Dim>() * translation(); |
| res.makeAffine(); // we do need this, because in the beginning res is uninitialized |
| } |
| return res; |
| } |
| |
| namespace internal { |
| |
| /***************************************************** |
| *** Specializations of take affine part *** |
| *****************************************************/ |
| |
| template <typename TransformType> |
| struct transform_take_affine_part { |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef typename TransformType::AffinePart AffinePart; |
| typedef typename TransformType::ConstAffinePart ConstAffinePart; |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE AffinePart run(MatrixType& m) { |
| return m.template block<TransformType::Dim, TransformType::HDim>(0, 0); |
| } |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ConstAffinePart run(const MatrixType& m) { |
| return m.template block<TransformType::Dim, TransformType::HDim>(0, 0); |
| } |
| }; |
| |
| template <typename Scalar, int Dim, int Options> |
| struct transform_take_affine_part<Transform<Scalar, Dim, AffineCompact, Options> > { |
| typedef typename Transform<Scalar, Dim, AffineCompact, Options>::MatrixType MatrixType; |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MatrixType& run(MatrixType& m) { return m; } |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixType& run(const MatrixType& m) { return m; } |
| }; |
| |
| /***************************************************** |
| *** Specializations of construct from matrix *** |
| *****************************************************/ |
| |
| template <typename Other, int Mode, int Options, int Dim, int HDim> |
| struct transform_construct_from_matrix<Other, Mode, Options, Dim, HDim, Dim, Dim> { |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run( |
| Transform<typename Other::Scalar, Dim, Mode, Options>* transform, const Other& other) { |
| transform->linear() = other; |
| transform->translation().setZero(); |
| transform->makeAffine(); |
| } |
| }; |
| |
| template <typename Other, int Mode, int Options, int Dim, int HDim> |
| struct transform_construct_from_matrix<Other, Mode, Options, Dim, HDim, Dim, HDim> { |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run( |
| Transform<typename Other::Scalar, Dim, Mode, Options>* transform, const Other& other) { |
| transform->affine() = other; |
| transform->makeAffine(); |
| } |
| }; |
| |
| template <typename Other, int Mode, int Options, int Dim, int HDim> |
| struct transform_construct_from_matrix<Other, Mode, Options, Dim, HDim, HDim, HDim> { |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run( |
| Transform<typename Other::Scalar, Dim, Mode, Options>* transform, const Other& other) { |
| transform->matrix() = other; |
| } |
| }; |
| |
| template <typename Other, int Options, int Dim, int HDim> |
| struct transform_construct_from_matrix<Other, AffineCompact, Options, Dim, HDim, HDim, HDim> { |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run( |
| Transform<typename Other::Scalar, Dim, AffineCompact, Options>* transform, const Other& other) { |
| transform->matrix() = other.template block<Dim, HDim>(0, 0); |
| } |
| }; |
| |
| /********************************************************** |
| *** Specializations of operator* with rhs EigenBase *** |
| **********************************************************/ |
| |
| template <int LhsMode, int RhsMode> |
| struct transform_product_result { |
| enum { |
| Mode = (LhsMode == (int)Projective || RhsMode == (int)Projective) ? Projective |
| : (LhsMode == (int)Affine || RhsMode == (int)Affine) ? Affine |
| : (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact) ? AffineCompact |
| : (LhsMode == (int)Isometry || RhsMode == (int)Isometry) ? Isometry |
| : Projective |
| }; |
| }; |
| |
| template <typename TransformType, typename MatrixType, int RhsCols> |
| struct transform_right_product_impl<TransformType, MatrixType, 0, RhsCols> { |
| typedef typename MatrixType::PlainObject ResultType; |
| |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) { |
| return T.matrix() * other; |
| } |
| }; |
| |
| template <typename TransformType, typename MatrixType, int RhsCols> |
| struct transform_right_product_impl<TransformType, MatrixType, 1, RhsCols> { |
| enum { |
| Dim = TransformType::Dim, |
| HDim = TransformType::HDim, |
| OtherRows = MatrixType::RowsAtCompileTime, |
| OtherCols = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef typename MatrixType::PlainObject ResultType; |
| |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) { |
| EIGEN_STATIC_ASSERT(OtherRows == HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); |
| |
| typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime) == Dim> TopLeftLhs; |
| |
| ResultType res(other.rows(), other.cols()); |
| TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; |
| res.row(OtherRows - 1) = other.row(OtherRows - 1); |
| |
| return res; |
| } |
| }; |
| |
| template <typename TransformType, typename MatrixType, int RhsCols> |
| struct transform_right_product_impl<TransformType, MatrixType, 2, RhsCols> { |
| enum { |
| Dim = TransformType::Dim, |
| HDim = TransformType::HDim, |
| OtherRows = MatrixType::RowsAtCompileTime, |
| OtherCols = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef typename MatrixType::PlainObject ResultType; |
| |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) { |
| EIGEN_STATIC_ASSERT(OtherRows == Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); |
| |
| typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs; |
| ResultType res( |
| Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(), 1, other.cols())); |
| TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; |
| |
| return res; |
| } |
| }; |
| |
| template <typename TransformType, typename MatrixType> |
| struct transform_right_product_impl<TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim |
| { |
| typedef typename TransformType::MatrixType TransformMatrix; |
| enum { |
| Dim = TransformType::Dim, |
| HDim = TransformType::HDim, |
| OtherRows = MatrixType::RowsAtCompileTime, |
| WorkingRows = plain_enum_min(TransformMatrix::RowsAtCompileTime, HDim) |
| }; |
| |
| typedef typename MatrixType::PlainObject ResultType; |
| |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) { |
| EIGEN_STATIC_ASSERT(OtherRows == Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); |
| |
| Matrix<typename ResultType::Scalar, Dim + 1, 1> rhs; |
| rhs.template head<Dim>() = other; |
| rhs[Dim] = typename ResultType::Scalar(1); |
| Matrix<typename ResultType::Scalar, WorkingRows, 1> res(T.matrix() * rhs); |
| return res.template head<Dim>(); |
| } |
| }; |
| |
| /********************************************************** |
| *** Specializations of operator* with lhs EigenBase *** |
| **********************************************************/ |
| |
| // generic HDim x HDim matrix * T => Projective |
| template <typename Other, int Mode, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other, Mode, Options, Dim, HDim, HDim, HDim> { |
| typedef Transform<typename Other::Scalar, Dim, Mode, Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef Transform<typename Other::Scalar, Dim, Projective, Options> ResultType; |
| static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { |
| return ResultType(other * tr.matrix()); |
| } |
| }; |
| |
| // generic HDim x HDim matrix * AffineCompact => Projective |
| template <typename Other, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other, AffineCompact, Options, Dim, HDim, HDim, HDim> { |
| typedef Transform<typename Other::Scalar, Dim, AffineCompact, Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef Transform<typename Other::Scalar, Dim, Projective, Options> ResultType; |
| static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { |
| ResultType res; |
| res.matrix().noalias() = other.template block<HDim, Dim>(0, 0) * tr.matrix(); |
| res.matrix().col(Dim) += other.col(Dim); |
| return res; |
| } |
| }; |
| |
| // affine matrix * T |
| template <typename Other, int Mode, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other, Mode, Options, Dim, HDim, Dim, HDim> { |
| typedef Transform<typename Other::Scalar, Dim, Mode, Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { |
| ResultType res; |
| res.affine().noalias() = other * tr.matrix(); |
| res.matrix().row(Dim) = tr.matrix().row(Dim); |
| return res; |
| } |
| }; |
| |
| // affine matrix * AffineCompact |
| template <typename Other, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other, AffineCompact, Options, Dim, HDim, Dim, HDim> { |
| typedef Transform<typename Other::Scalar, Dim, AffineCompact, Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { |
| ResultType res; |
| res.matrix().noalias() = other.template block<Dim, Dim>(0, 0) * tr.matrix(); |
| res.translation() += other.col(Dim); |
| return res; |
| } |
| }; |
| |
| // linear matrix * T |
| template <typename Other, int Mode, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other, Mode, Options, Dim, HDim, Dim, Dim> { |
| typedef Transform<typename Other::Scalar, Dim, Mode, Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static EIGEN_DEVICE_FUNC ResultType run(const Other& other, const TransformType& tr) { |
| TransformType res; |
| if (Mode != int(AffineCompact)) res.matrix().row(Dim) = tr.matrix().row(Dim); |
| res.matrix().template topRows<Dim>().noalias() = other * tr.matrix().template topRows<Dim>(); |
| return res; |
| } |
| }; |
| |
| /********************************************************** |
| *** Specializations of operator* with another Transform *** |
| **********************************************************/ |
| |
| template <typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> |
| struct transform_transform_product_impl<Transform<Scalar, Dim, LhsMode, LhsOptions>, |
| Transform<Scalar, Dim, RhsMode, RhsOptions>, false> { |
| enum { ResultMode = transform_product_result<LhsMode, RhsMode>::Mode }; |
| typedef Transform<Scalar, Dim, LhsMode, LhsOptions> Lhs; |
| typedef Transform<Scalar, Dim, RhsMode, RhsOptions> Rhs; |
| typedef Transform<Scalar, Dim, ResultMode, LhsOptions> ResultType; |
| static EIGEN_DEVICE_FUNC ResultType run(const Lhs& lhs, const Rhs& rhs) { |
| ResultType res; |
| res.linear() = lhs.linear() * rhs.linear(); |
| res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); |
| res.makeAffine(); |
| return res; |
| } |
| }; |
| |
| template <typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> |
| struct transform_transform_product_impl<Transform<Scalar, Dim, LhsMode, LhsOptions>, |
| Transform<Scalar, Dim, RhsMode, RhsOptions>, true> { |
| typedef Transform<Scalar, Dim, LhsMode, LhsOptions> Lhs; |
| typedef Transform<Scalar, Dim, RhsMode, RhsOptions> Rhs; |
| typedef Transform<Scalar, Dim, Projective> ResultType; |
| static EIGEN_DEVICE_FUNC ResultType run(const Lhs& lhs, const Rhs& rhs) { |
| return ResultType(lhs.matrix() * rhs.matrix()); |
| } |
| }; |
| |
| template <typename Scalar, int Dim, int LhsOptions, int RhsOptions> |
| struct transform_transform_product_impl<Transform<Scalar, Dim, AffineCompact, LhsOptions>, |
| Transform<Scalar, Dim, Projective, RhsOptions>, true> { |
| typedef Transform<Scalar, Dim, AffineCompact, LhsOptions> Lhs; |
| typedef Transform<Scalar, Dim, Projective, RhsOptions> Rhs; |
| typedef Transform<Scalar, Dim, Projective> ResultType; |
| static EIGEN_DEVICE_FUNC ResultType run(const Lhs& lhs, const Rhs& rhs) { |
| ResultType res; |
| res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix(); |
| res.matrix().row(Dim) = rhs.matrix().row(Dim); |
| return res; |
| } |
| }; |
| |
| template <typename Scalar, int Dim, int LhsOptions, int RhsOptions> |
| struct transform_transform_product_impl<Transform<Scalar, Dim, Projective, LhsOptions>, |
| Transform<Scalar, Dim, AffineCompact, RhsOptions>, true> { |
| typedef Transform<Scalar, Dim, Projective, LhsOptions> Lhs; |
| typedef Transform<Scalar, Dim, AffineCompact, RhsOptions> Rhs; |
| typedef Transform<Scalar, Dim, Projective> ResultType; |
| static EIGEN_DEVICE_FUNC ResultType run(const Lhs& lhs, const Rhs& rhs) { |
| ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix()); |
| res.matrix().col(Dim) += lhs.matrix().col(Dim); |
| return res; |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_TRANSFORM_H |