| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SPARSEDENSEPRODUCT_H |
| #define EIGEN_SPARSEDENSEPRODUCT_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <> |
| struct product_promote_storage_type<Sparse, Dense, OuterProduct> { |
| typedef Sparse ret; |
| }; |
| template <> |
| struct product_promote_storage_type<Dense, Sparse, OuterProduct> { |
| typedef Sparse ret; |
| }; |
| |
| template <typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType, |
| int LhsStorageOrder = ((SparseLhsType::Flags & RowMajorBit) == RowMajorBit) ? RowMajor : ColMajor, |
| bool ColPerCol = ((DenseRhsType::Flags & RowMajorBit) == 0) || DenseRhsType::ColsAtCompileTime == 1> |
| struct sparse_time_dense_product_impl; |
| |
| template <typename SparseLhsType, typename DenseRhsType, typename DenseResType> |
| struct sparse_time_dense_product_impl<SparseLhsType, DenseRhsType, DenseResType, typename DenseResType::Scalar, |
| RowMajor, true> { |
| typedef internal::remove_all_t<SparseLhsType> Lhs; |
| typedef internal::remove_all_t<DenseRhsType> Rhs; |
| typedef internal::remove_all_t<DenseResType> Res; |
| typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator; |
| typedef evaluator<Lhs> LhsEval; |
| static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, |
| const typename Res::Scalar& alpha) { |
| LhsEval lhsEval(lhs); |
| |
| Index n = lhs.outerSize(); |
| #ifdef EIGEN_HAS_OPENMP |
| Index threads = Eigen::nbThreads(); |
| #endif |
| |
| for (Index c = 0; c < rhs.cols(); ++c) { |
| #ifdef EIGEN_HAS_OPENMP |
| // This 20000 threshold has been found experimentally on 2D and 3D Poisson problems. |
| // It basically represents the minimal amount of work to be done to be worth it. |
| if (threads > 1 && lhsEval.nonZerosEstimate() > 20000) { |
| #pragma omp parallel for schedule(dynamic, (n + threads * 4 - 1) / (threads * 4)) num_threads(threads) |
| for (Index i = 0; i < n; ++i) processRow(lhsEval, rhs, res, alpha, i, c); |
| } else |
| #endif |
| { |
| for (Index i = 0; i < n; ++i) processRow(lhsEval, rhs, res, alpha, i, c); |
| } |
| } |
| } |
| |
| static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, DenseResType& res, |
| const typename Res::Scalar& alpha, Index i, Index col) { |
| // Two accumulators, which breaks the dependency chain on the accumulator |
| // and allows more instruction-level parallelism in the following loop |
| typename Res::Scalar tmp_a(0); |
| typename Res::Scalar tmp_b(0); |
| for (LhsInnerIterator it(lhsEval, i); it; ++it) { |
| tmp_a += it.value() * rhs.coeff(it.index(), col); |
| ++it; |
| if (it) { |
| tmp_b += it.value() * rhs.coeff(it.index(), col); |
| } |
| } |
| res.coeffRef(i, col) += alpha * (tmp_a + tmp_b); |
| } |
| }; |
| |
| // FIXME: what is the purpose of the following specialization? Is it for the BlockedSparse format? |
| // -> let's disable it for now as it is conflicting with generic scalar*matrix and matrix*scalar operators |
| // template<typename T1, typename T2/*, int Options_, typename StrideType_*/> |
| // struct ScalarBinaryOpTraits<T1, Ref<T2/*, Options_, StrideType_*/> > |
| // { |
| // enum { |
| // Defined = 1 |
| // }; |
| // typedef typename CwiseUnaryOp<scalar_multiple2_op<T1, typename T2::Scalar>, T2>::PlainObject ReturnType; |
| // }; |
| |
| template <typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType> |
| struct sparse_time_dense_product_impl<SparseLhsType, DenseRhsType, DenseResType, AlphaType, ColMajor, true> { |
| typedef internal::remove_all_t<SparseLhsType> Lhs; |
| typedef internal::remove_all_t<DenseRhsType> Rhs; |
| typedef internal::remove_all_t<DenseResType> Res; |
| typedef evaluator<Lhs> LhsEval; |
| typedef typename LhsEval::InnerIterator LhsInnerIterator; |
| static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) { |
| LhsEval lhsEval(lhs); |
| for (Index c = 0; c < rhs.cols(); ++c) { |
| for (Index j = 0; j < lhs.outerSize(); ++j) { |
| // typename Res::Scalar rhs_j = alpha * rhs.coeff(j,c); |
| typename ScalarBinaryOpTraits<AlphaType, typename Rhs::Scalar>::ReturnType rhs_j(alpha * rhs.coeff(j, c)); |
| for (LhsInnerIterator it(lhsEval, j); it; ++it) res.coeffRef(it.index(), c) += it.value() * rhs_j; |
| } |
| } |
| } |
| }; |
| |
| template <typename SparseLhsType, typename DenseRhsType, typename DenseResType> |
| struct sparse_time_dense_product_impl<SparseLhsType, DenseRhsType, DenseResType, typename DenseResType::Scalar, |
| RowMajor, false> { |
| typedef internal::remove_all_t<SparseLhsType> Lhs; |
| typedef internal::remove_all_t<DenseRhsType> Rhs; |
| typedef internal::remove_all_t<DenseResType> Res; |
| typedef evaluator<Lhs> LhsEval; |
| typedef typename LhsEval::InnerIterator LhsInnerIterator; |
| static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, |
| const typename Res::Scalar& alpha) { |
| Index n = lhs.rows(); |
| LhsEval lhsEval(lhs); |
| |
| #ifdef EIGEN_HAS_OPENMP |
| Index threads = Eigen::nbThreads(); |
| // This 20000 threshold has been found experimentally on 2D and 3D Poisson problems. |
| // It basically represents the minimal amount of work to be done to be worth it. |
| if (threads > 1 && lhsEval.nonZerosEstimate() * rhs.cols() > 20000) { |
| #pragma omp parallel for schedule(dynamic, (n + threads * 4 - 1) / (threads * 4)) num_threads(threads) |
| for (Index i = 0; i < n; ++i) processRow(lhsEval, rhs, res, alpha, i); |
| } else |
| #endif |
| { |
| for (Index i = 0; i < n; ++i) processRow(lhsEval, rhs, res, alpha, i); |
| } |
| } |
| |
| static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, Res& res, const typename Res::Scalar& alpha, |
| Index i) { |
| typename Res::RowXpr res_i(res.row(i)); |
| for (LhsInnerIterator it(lhsEval, i); it; ++it) res_i += (alpha * it.value()) * rhs.row(it.index()); |
| } |
| }; |
| |
| template <typename SparseLhsType, typename DenseRhsType, typename DenseResType> |
| struct sparse_time_dense_product_impl<SparseLhsType, DenseRhsType, DenseResType, typename DenseResType::Scalar, |
| ColMajor, false> { |
| typedef internal::remove_all_t<SparseLhsType> Lhs; |
| typedef internal::remove_all_t<DenseRhsType> Rhs; |
| typedef internal::remove_all_t<DenseResType> Res; |
| typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator; |
| static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, |
| const typename Res::Scalar& alpha) { |
| evaluator<Lhs> lhsEval(lhs); |
| for (Index j = 0; j < lhs.outerSize(); ++j) { |
| typename Rhs::ConstRowXpr rhs_j(rhs.row(j)); |
| for (LhsInnerIterator it(lhsEval, j); it; ++it) res.row(it.index()) += (alpha * it.value()) * rhs_j; |
| } |
| } |
| }; |
| |
| template <typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType> |
| inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, |
| const AlphaType& alpha) { |
| sparse_time_dense_product_impl<SparseLhsType, DenseRhsType, DenseResType, AlphaType>::run(lhs, rhs, res, alpha); |
| } |
| |
| } // end namespace internal |
| |
| namespace internal { |
| |
| template <typename Lhs, typename Rhs, int ProductType> |
| struct generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType> |
| : generic_product_impl_base<Lhs, Rhs, generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType> > { |
| typedef typename Product<Lhs, Rhs>::Scalar Scalar; |
| |
| template <typename Dest> |
| static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { |
| typedef typename nested_eval<Lhs, ((Rhs::Flags & RowMajorBit) == 0) ? 1 : Rhs::ColsAtCompileTime>::type LhsNested; |
| typedef typename nested_eval<Rhs, ((Lhs::Flags & RowMajorBit) == 0) ? 1 : Dynamic>::type RhsNested; |
| LhsNested lhsNested(lhs); |
| RhsNested rhsNested(rhs); |
| internal::sparse_time_dense_product(lhsNested, rhsNested, dst, alpha); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs, int ProductType> |
| struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, DenseShape, ProductType> |
| : generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType> {}; |
| |
| template <typename Lhs, typename Rhs, int ProductType> |
| struct generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType> |
| : generic_product_impl_base<Lhs, Rhs, generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType> > { |
| typedef typename Product<Lhs, Rhs>::Scalar Scalar; |
| |
| template <typename Dst> |
| static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) { |
| typedef typename nested_eval<Lhs, ((Rhs::Flags & RowMajorBit) == 0) ? Dynamic : 1>::type LhsNested; |
| typedef typename nested_eval<Rhs, ((Lhs::Flags & RowMajorBit) == RowMajorBit) ? 1 : Lhs::RowsAtCompileTime>::type |
| RhsNested; |
| LhsNested lhsNested(lhs); |
| RhsNested rhsNested(rhs); |
| |
| // transpose everything |
| Transpose<Dst> dstT(dst); |
| internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs, int ProductType> |
| struct generic_product_impl<Lhs, Rhs, DenseShape, SparseTriangularShape, ProductType> |
| : generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType> {}; |
| |
| template <typename LhsT, typename RhsT, bool NeedToTranspose> |
| struct sparse_dense_outer_product_evaluator { |
| protected: |
| typedef std::conditional_t<NeedToTranspose, RhsT, LhsT> Lhs1; |
| typedef std::conditional_t<NeedToTranspose, LhsT, RhsT> ActualRhs; |
| typedef Product<LhsT, RhsT, DefaultProduct> ProdXprType; |
| |
| // if the actual left-hand side is a dense vector, |
| // then build a sparse-view so that we can seamlessly iterate over it. |
| typedef std::conditional_t<is_same<typename internal::traits<Lhs1>::StorageKind, Sparse>::value, Lhs1, |
| SparseView<Lhs1> > |
| ActualLhs; |
| typedef std::conditional_t<is_same<typename internal::traits<Lhs1>::StorageKind, Sparse>::value, Lhs1 const&, |
| SparseView<Lhs1> > |
| LhsArg; |
| |
| typedef evaluator<ActualLhs> LhsEval; |
| typedef evaluator<ActualRhs> RhsEval; |
| typedef typename evaluator<ActualLhs>::InnerIterator LhsIterator; |
| typedef typename ProdXprType::Scalar Scalar; |
| |
| public: |
| enum { Flags = NeedToTranspose ? RowMajorBit : 0, CoeffReadCost = HugeCost }; |
| |
| class InnerIterator : public LhsIterator { |
| public: |
| InnerIterator(const sparse_dense_outer_product_evaluator& xprEval, Index outer) |
| : LhsIterator(xprEval.m_lhsXprImpl, 0), |
| m_outer(outer), |
| m_empty(false), |
| m_factor(get(xprEval.m_rhsXprImpl, outer, typename internal::traits<ActualRhs>::StorageKind())) {} |
| |
| EIGEN_STRONG_INLINE Index outer() const { return m_outer; } |
| EIGEN_STRONG_INLINE Index row() const { return NeedToTranspose ? m_outer : LhsIterator::index(); } |
| EIGEN_STRONG_INLINE Index col() const { return NeedToTranspose ? LhsIterator::index() : m_outer; } |
| |
| EIGEN_STRONG_INLINE Scalar value() const { return LhsIterator::value() * m_factor; } |
| EIGEN_STRONG_INLINE operator bool() const { return LhsIterator::operator bool() && (!m_empty); } |
| |
| protected: |
| Scalar get(const RhsEval& rhs, Index outer, Dense = Dense()) const { return rhs.coeff(outer); } |
| |
| Scalar get(const RhsEval& rhs, Index outer, Sparse = Sparse()) { |
| typename RhsEval::InnerIterator it(rhs, outer); |
| if (it && it.index() == 0 && it.value() != Scalar(0)) return it.value(); |
| m_empty = true; |
| return Scalar(0); |
| } |
| |
| Index m_outer; |
| bool m_empty; |
| Scalar m_factor; |
| }; |
| |
| sparse_dense_outer_product_evaluator(const Lhs1& lhs, const ActualRhs& rhs) |
| : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs) { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| // transpose case |
| sparse_dense_outer_product_evaluator(const ActualRhs& rhs, const Lhs1& lhs) |
| : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs) { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| protected: |
| const LhsArg m_lhs; |
| evaluator<ActualLhs> m_lhsXprImpl; |
| evaluator<ActualRhs> m_rhsXprImpl; |
| }; |
| |
| // sparse * dense outer product |
| template <typename Lhs, typename Rhs> |
| struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, SparseShape, DenseShape> |
| : sparse_dense_outer_product_evaluator<Lhs, Rhs, Lhs::IsRowMajor> { |
| typedef sparse_dense_outer_product_evaluator<Lhs, Rhs, Lhs::IsRowMajor> Base; |
| |
| typedef Product<Lhs, Rhs> XprType; |
| typedef typename XprType::PlainObject PlainObject; |
| |
| explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs()) {} |
| }; |
| |
| template <typename Lhs, typename Rhs> |
| struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, DenseShape, SparseShape> |
| : sparse_dense_outer_product_evaluator<Lhs, Rhs, Rhs::IsRowMajor> { |
| typedef sparse_dense_outer_product_evaluator<Lhs, Rhs, Rhs::IsRowMajor> Base; |
| |
| typedef Product<Lhs, Rhs> XprType; |
| typedef typename XprType::PlainObject PlainObject; |
| |
| explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs()) {} |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SPARSEDENSEPRODUCT_H |