| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Daniel Lowengrub <lowdanie@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SPARSEVIEW_H |
| #define EIGEN_SPARSEVIEW_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename MatrixType> |
| struct traits<SparseView<MatrixType> > : traits<MatrixType> { |
| typedef typename MatrixType::StorageIndex StorageIndex; |
| typedef Sparse StorageKind; |
| enum { Flags = int(traits<MatrixType>::Flags) & (RowMajorBit) }; |
| }; |
| |
| } // end namespace internal |
| |
| /** \ingroup SparseCore_Module |
| * \class SparseView |
| * |
| * \brief Expression of a dense or sparse matrix with zero or too small values removed |
| * |
| * \tparam MatrixType the type of the object of which we are removing the small entries |
| * |
| * This class represents an expression of a given dense or sparse matrix with |
| * entries smaller than \c reference * \c epsilon are removed. |
| * It is the return type of MatrixBase::sparseView() and SparseMatrixBase::pruned() |
| * and most of the time this is the only way it is used. |
| * |
| * \sa MatrixBase::sparseView(), SparseMatrixBase::pruned() |
| */ |
| template <typename MatrixType> |
| class SparseView : public SparseMatrixBase<SparseView<MatrixType> > { |
| typedef typename MatrixType::Nested MatrixTypeNested; |
| typedef internal::remove_all_t<MatrixTypeNested> MatrixTypeNested_; |
| typedef SparseMatrixBase<SparseView> Base; |
| |
| public: |
| EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView) |
| typedef internal::remove_all_t<MatrixType> NestedExpression; |
| |
| explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0), |
| const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) |
| : m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {} |
| |
| inline Index rows() const { return m_matrix.rows(); } |
| inline Index cols() const { return m_matrix.cols(); } |
| |
| inline Index innerSize() const { return m_matrix.innerSize(); } |
| inline Index outerSize() const { return m_matrix.outerSize(); } |
| |
| /** \returns the nested expression */ |
| const internal::remove_all_t<MatrixTypeNested>& nestedExpression() const { return m_matrix; } |
| |
| Scalar reference() const { return m_reference; } |
| RealScalar epsilon() const { return m_epsilon; } |
| |
| protected: |
| MatrixTypeNested m_matrix; |
| Scalar m_reference; |
| RealScalar m_epsilon; |
| }; |
| |
| namespace internal { |
| |
| // TODO find a way to unify the two following variants |
| // This is tricky because implementing an inner iterator on top of an IndexBased evaluator is |
| // not easy because the evaluators do not expose the sizes of the underlying expression. |
| |
| template <typename ArgType> |
| struct unary_evaluator<SparseView<ArgType>, IteratorBased> : public evaluator_base<SparseView<ArgType> > { |
| typedef typename evaluator<ArgType>::InnerIterator EvalIterator; |
| |
| public: |
| typedef SparseView<ArgType> XprType; |
| |
| class InnerIterator : public EvalIterator { |
| protected: |
| typedef typename XprType::Scalar Scalar; |
| |
| public: |
| EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) |
| : EvalIterator(sve.m_argImpl, outer), m_view(sve.m_view) { |
| incrementToNonZero(); |
| } |
| |
| EIGEN_STRONG_INLINE InnerIterator& operator++() { |
| EvalIterator::operator++(); |
| incrementToNonZero(); |
| return *this; |
| } |
| |
| using EvalIterator::value; |
| |
| protected: |
| const XprType& m_view; |
| |
| private: |
| void incrementToNonZero() { |
| while ((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon())) { |
| EvalIterator::operator++(); |
| } |
| } |
| }; |
| |
| enum { CoeffReadCost = evaluator<ArgType>::CoeffReadCost, Flags = XprType::Flags }; |
| |
| explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} |
| |
| protected: |
| evaluator<ArgType> m_argImpl; |
| const XprType& m_view; |
| }; |
| |
| template <typename ArgType> |
| struct unary_evaluator<SparseView<ArgType>, IndexBased> : public evaluator_base<SparseView<ArgType> > { |
| public: |
| typedef SparseView<ArgType> XprType; |
| |
| protected: |
| enum { IsRowMajor = (XprType::Flags & RowMajorBit) == RowMajorBit }; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::StorageIndex StorageIndex; |
| |
| public: |
| class InnerIterator { |
| public: |
| EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) |
| : m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize()) { |
| incrementToNonZero(); |
| } |
| |
| EIGEN_STRONG_INLINE InnerIterator& operator++() { |
| m_inner++; |
| incrementToNonZero(); |
| return *this; |
| } |
| |
| EIGEN_STRONG_INLINE Scalar value() const { |
| return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner) : m_sve.m_argImpl.coeff(m_inner, m_outer); |
| } |
| |
| EIGEN_STRONG_INLINE StorageIndex index() const { return m_inner; } |
| inline Index row() const { return IsRowMajor ? m_outer : index(); } |
| inline Index col() const { return IsRowMajor ? index() : m_outer; } |
| |
| EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner >= 0; } |
| |
| protected: |
| const unary_evaluator& m_sve; |
| Index m_inner; |
| const Index m_outer; |
| const Index m_end; |
| |
| private: |
| void incrementToNonZero() { |
| while ((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon())) { |
| m_inner++; |
| } |
| } |
| }; |
| |
| enum { CoeffReadCost = evaluator<ArgType>::CoeffReadCost, Flags = XprType::Flags }; |
| |
| explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} |
| |
| protected: |
| evaluator<ArgType> m_argImpl; |
| const XprType& m_view; |
| }; |
| |
| } // end namespace internal |
| |
| /** \ingroup SparseCore_Module |
| * |
| * \returns a sparse expression of the dense expression \c *this with values smaller than |
| * \a reference * \a epsilon removed. |
| * |
| * This method is typically used when prototyping to convert a quickly assembled dense Matrix \c D to a SparseMatrix \c |
| * S: \code MatrixXd D(n,m); SparseMatrix<double> S; S = D.sparseView(); // suppress numerical zeros (exact) |
| * S = D.sparseView(reference); |
| * S = D.sparseView(reference,epsilon); |
| * \endcode |
| * where \a reference is a meaningful non zero reference value, |
| * and \a epsilon is a tolerance factor defaulting to NumTraits<Scalar>::dummy_precision(). |
| * |
| * \sa SparseMatrixBase::pruned(), class SparseView */ |
| template <typename Derived> |
| const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& reference, |
| const typename NumTraits<Scalar>::Real& epsilon) const { |
| return SparseView<Derived>(derived(), reference, epsilon); |
| } |
| |
| /** \returns an expression of \c *this with values smaller than |
| * \a reference * \a epsilon removed. |
| * |
| * This method is typically used in conjunction with the product of two sparse matrices |
| * to automatically prune the smallest values as follows: |
| * \code |
| * C = (A*B).pruned(); // suppress numerical zeros (exact) |
| * C = (A*B).pruned(ref); |
| * C = (A*B).pruned(ref,epsilon); |
| * \endcode |
| * where \c ref is a meaningful non zero reference value. |
| * */ |
| template <typename Derived> |
| const SparseView<Derived> SparseMatrixBase<Derived>::pruned(const Scalar& reference, const RealScalar& epsilon) const { |
| return SparseView<Derived>(derived(), reference, epsilon); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif |