| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <functional> |
| #include <Eigen/Array> |
| |
| using namespace std; |
| |
| template<typename Scalar> struct AddIfNull { |
| const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} |
| enum { Cost = NumTraits<Scalar>::AddCost }; |
| }; |
| |
| template<typename MatrixType> void cwiseops(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), |
| mones = MatrixType::Ones(rows, cols), |
| identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Identity(rows, rows), |
| square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Random(rows, rows); |
| VectorType v1 = VectorType::Random(rows), |
| v2 = VectorType::Random(rows), |
| vzero = VectorType::Zero(rows); |
| |
| m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones); |
| |
| VERIFY_IS_APPROX( mzero, m1-m1); |
| VERIFY_IS_APPROX( m2, m1+m2-m1); |
| #ifdef EIGEN_VECTORIZE |
| if(NumTraits<Scalar>::HasFloatingPoint) |
| #endif |
| { |
| VERIFY_IS_APPROX( mones, m2.cwise()/m2); |
| } |
| VERIFY_IS_APPROX( m1.cwise() * m2, m2.cwise() * m1); |
| |
| VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() ); |
| VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() ); |
| VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() ); |
| //VERIFY_IS_APPROX( m1, m2.cwiseProduct(m1).cwiseQuotient(m2)); |
| |
| // VERIFY_IS_APPROX( cwiseMin(m1,m2), cwiseMin(m2,m1) ); |
| // VERIFY_IS_APPROX( cwiseMin(m1,m1+mones), m1 ); |
| // VERIFY_IS_APPROX( cwiseMin(m1,m1-mones), m1-mones ); |
| } |
| |
| void test_cwiseop() |
| { |
| for(int i = 0; i < g_repeat ; i++) { |
| CALL_SUBTEST( cwiseops(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST( cwiseops(Matrix4d()) ); |
| CALL_SUBTEST( cwiseops(MatrixXf(3, 3)) ); |
| CALL_SUBTEST( cwiseops(MatrixXi(8, 12)) ); |
| CALL_SUBTEST( cwiseops(MatrixXd(20, 20)) ); |
| } |
| } |