| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void triangular(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| r1(rows, cols), |
| r2(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), |
| mones = MatrixType::Ones(rows, cols), |
| identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Identity(rows, rows), |
| square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::Random(rows, rows); |
| VectorType v1 = VectorType::Random(rows), |
| v2 = VectorType::Random(rows), |
| vzero = VectorType::Zero(rows); |
| |
| MatrixType m1up = m1.template part<Eigen::Upper>(); |
| MatrixType m2up = m2.template part<Eigen::Upper>(); |
| |
| if (rows*cols>1) |
| { |
| VERIFY(m1up.isUpper()); |
| VERIFY(m2up.transpose().isLower()); |
| VERIFY(!m2.isLower()); |
| } |
| |
| // VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); |
| |
| // test overloaded operator+= |
| r1.setZero(); |
| r2.setZero(); |
| r1.template part<Eigen::Upper>() += m1; |
| r2 += m1up; |
| VERIFY_IS_APPROX(r1,r2); |
| |
| // test overloaded operator= |
| m1.setZero(); |
| m1.template part<Eigen::Upper>() = (m2.transpose() * m2).lazy(); |
| m3 = m2.transpose() * m2; |
| VERIFY_IS_APPROX(m3.template part<Eigen::Lower>().transpose(), m1); |
| |
| // test overloaded operator= |
| m1.setZero(); |
| m1.template part<Eigen::Lower>() = (m2.transpose() * m2).lazy(); |
| VERIFY_IS_APPROX(m3.template part<Eigen::Lower>(), m1); |
| |
| // test back and forward subsitution |
| m3 = m1.template part<Eigen::Lower>(); |
| VERIFY(m3.template marked<Eigen::Lower>().inverseProduct(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); |
| |
| m3 = m1.template part<Eigen::Upper>(); |
| VERIFY(m3.template marked<Eigen::Upper>().inverseProduct(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); |
| |
| // FIXME these tests failed due to numerical issues |
| // m1 = MatrixType::Random(rows, cols); |
| // VERIFY_IS_APPROX(m1.template part<Eigen::Upper>().eval() * (m1.template part<Eigen::Upper>().inverseProduct(m2)), m2); |
| // VERIFY_IS_APPROX(m1.template part<Eigen::Lower>().eval() * (m1.template part<Eigen::Lower>().inverseProduct(m2)), m2); |
| |
| VERIFY((m1.template part<Eigen::Upper>() * m2.template part<Eigen::Upper>()).isUpper()); |
| |
| } |
| |
| void test_triangular() |
| { |
| for(int i = 0; i < g_repeat ; i++) { |
| // triangular(Matrix<float, 1, 1>()); |
| CALL_SUBTEST( triangular(Matrix3d()) ); |
| CALL_SUBTEST( triangular(MatrixXcf(4, 4)) ); |
| CALL_SUBTEST( triangular(Matrix<std::complex<float>,8, 8>()) ); |
| CALL_SUBTEST( triangular(MatrixXf(12,12)) ); |
| } |
| } |