blob: dd4a2c4dd1027c8d0e1711e838243a6502350549 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template <typename T, typename U,
bool NeedToTranspose = T::IsVectorAtCompileTime && U::IsVectorAtCompileTime &&
((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) ||
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))>
struct dot_nocheck {
typedef scalar_conj_product_op<typename traits<T>::Scalar, typename traits<U>::Scalar> conj_prod;
typedef typename conj_prod::result_type ResScalar;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) {
return a.template binaryExpr<conj_prod>(b).sum();
}
};
template <typename T, typename U>
struct dot_nocheck<T, U, true> {
typedef scalar_conj_product_op<typename traits<T>::Scalar, typename traits<U>::Scalar> conj_prod;
typedef typename conj_prod::result_type ResScalar;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) {
return a.transpose().template binaryExpr<conj_prod>(b).sum();
}
};
template <typename Derived, typename Scalar = typename traits<Derived>::Scalar>
struct squared_norm_impl {
using Real = typename NumTraits<Scalar>::Real;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Real run(const Derived& a) {
Scalar result = a.unaryExpr(squared_norm_functor<Scalar>()).sum();
return numext::real(result) + numext::imag(result);
}
};
template <typename Derived>
struct squared_norm_impl<Derived, bool> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(const Derived& a) { return a.any(); }
};
} // end namespace internal
/** \fn MatrixBase::dot
* \returns the dot product of *this with other.
*
* \only_for_vectors
*
* \note If the scalar type is complex numbers, then this function returns the hermitian
* (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
* second variable.
*
* \sa squaredNorm(), norm()
*/
template <typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,
typename internal::traits<OtherDerived>::Scalar>::ReturnType
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived, OtherDerived)
#if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG))
EIGEN_CHECK_BINARY_COMPATIBILIY(
Eigen::internal::scalar_conj_product_op<Scalar EIGEN_COMMA typename OtherDerived::Scalar>, Scalar,
typename OtherDerived::Scalar);
#endif
eigen_assert(size() == other.size());
return internal::dot_nocheck<Derived, OtherDerived>::run(*this, other);
}
//---------- implementation of L2 norm and related functions ----------
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the squared Frobenius norm.
* In both cases, it consists in the sum of the square of all the matrix entries.
* For vectors, this is also equals to the dot product of \c *this with itself.
*
* \sa dot(), norm(), lpNorm()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::squaredNorm() const {
return internal::squared_norm_impl<Derived>::run(derived());
}
/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
* In both cases, it consists in the square root of the sum of the square of all the matrix entries.
* For vectors, this is also equals to the square root of the dot product of \c *this with itself.
*
* \sa lpNorm(), dot(), squaredNorm()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::norm() const {
return numext::sqrt(squaredNorm());
}
/** \returns an expression of the quotient of \c *this by its own norm.
*
* \warning If the input vector is too small (i.e., this->norm()==0),
* then this function returns a copy of the input.
*
* \only_for_vectors
*
* \sa norm(), normalize()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::normalized()
const {
typedef typename internal::nested_eval<Derived, 2>::type Nested_;
Nested_ n(derived());
RealScalar z = n.squaredNorm();
// NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
if (z > RealScalar(0))
return n / numext::sqrt(z);
else
return n;
}
/** Normalizes the vector, i.e. divides it by its own norm.
*
* \only_for_vectors
*
* \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged.
*
* \sa norm(), normalized()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize() {
RealScalar z = squaredNorm();
// NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
if (z > RealScalar(0)) derived() /= numext::sqrt(z);
}
/** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow.
*
* \only_for_vectors
*
* This method is analogue to the normalized() method, but it reduces the risk of
* underflow and overflow when computing the norm.
*
* \warning If the input vector is too small (i.e., this->norm()==0),
* then this function returns a copy of the input.
*
* \sa stableNorm(), stableNormalize(), normalized()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::stableNormalized() const {
typedef typename internal::nested_eval<Derived, 3>::type Nested_;
Nested_ n(derived());
RealScalar w = n.cwiseAbs().maxCoeff();
RealScalar z = (n / w).squaredNorm();
if (z > RealScalar(0))
return n / (numext::sqrt(z) * w);
else
return n;
}
/** Normalizes the vector while avoid underflow and overflow
*
* \only_for_vectors
*
* This method is analogue to the normalize() method, but it reduces the risk of
* underflow and overflow when computing the norm.
*
* \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged.
*
* \sa stableNorm(), stableNormalized(), normalize()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize() {
RealScalar w = cwiseAbs().maxCoeff();
RealScalar z = (derived() / w).squaredNorm();
if (z > RealScalar(0)) derived() /= numext::sqrt(z) * w;
}
//---------- implementation of other norms ----------
namespace internal {
template <typename Derived, int p>
struct lpNorm_selector {
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC static inline RealScalar run(const MatrixBase<Derived>& m) {
EIGEN_USING_STD(pow)
return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1) / p);
}
};
template <typename Derived>
struct lpNorm_selector<Derived, 1> {
EIGEN_DEVICE_FUNC static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(
const MatrixBase<Derived>& m) {
return m.cwiseAbs().sum();
}
};
template <typename Derived>
struct lpNorm_selector<Derived, 2> {
EIGEN_DEVICE_FUNC static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(
const MatrixBase<Derived>& m) {
return m.norm();
}
};
template <typename Derived>
struct lpNorm_selector<Derived, Infinity> {
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC static inline RealScalar run(const MatrixBase<Derived>& m) {
if (Derived::SizeAtCompileTime == 0 || (Derived::SizeAtCompileTime == Dynamic && m.size() == 0))
return RealScalar(0);
return m.cwiseAbs().maxCoeff();
}
};
} // end namespace internal
/** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the
* p-th powers of the absolute values of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity,
* this function returns the \f$ \ell^\infty \f$ norm, that is the maximum of the absolute values of the coefficients of
* \c *this.
*
* In all cases, if \c *this is empty, then the value 0 is returned.
*
* \note For matrices, this function does not compute the <a
* href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its
* coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm
* matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink.
*
* \sa norm()
*/
template <typename Derived>
template <int p>
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_DEVICE_FUNC inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
#else
EIGEN_DEVICE_FUNC MatrixBase<Derived>::RealScalar
#endif
MatrixBase<Derived>::lpNorm() const {
return internal::lpNorm_selector<Derived, p>::run(*this);
}
//---------- implementation of isOrthogonal / isUnitary ----------
/** \returns true if *this is approximately orthogonal to \a other,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isOrthogonal.cpp
* Output: \verbinclude MatrixBase_isOrthogonal.out
*/
template <typename Derived>
template <typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const {
typename internal::nested_eval<Derived, 2>::type nested(derived());
typename internal::nested_eval<OtherDerived, 2>::type otherNested(other.derived());
return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
/** \returns true if *this is approximately an unitary matrix,
* within the precision given by \a prec. In the case where the \a Scalar
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
*
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
* orthonormal basis.
*
* Example: \include MatrixBase_isUnitary.cpp
* Output: \verbinclude MatrixBase_isUnitary.out
*/
template <typename Derived>
bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const {
typename internal::nested_eval<Derived, 1>::type self(derived());
for (Index i = 0; i < cols(); ++i) {
if (!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec)) return false;
for (Index j = 0; j < i; ++j)
if (!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec)) return false;
}
return true;
}
} // end namespace Eigen
#endif // EIGEN_DOT_H