| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATRIX_H |
| #define EIGEN_MATRIX_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| template <typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_> |
| struct traits<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>> { |
| private: |
| constexpr static int size = internal::size_at_compile_time(Rows_, Cols_); |
| typedef typename find_best_packet<Scalar_, size>::type PacketScalar; |
| enum { |
| row_major_bit = Options_ & RowMajor ? RowMajorBit : 0, |
| is_dynamic_size_storage = MaxRows_ == Dynamic || MaxCols_ == Dynamic, |
| max_size = is_dynamic_size_storage ? Dynamic : MaxRows_ * MaxCols_, |
| default_alignment = compute_default_alignment<Scalar_, max_size>::value, |
| actual_alignment = ((Options_ & DontAlign) == 0) ? default_alignment : 0, |
| required_alignment = unpacket_traits<PacketScalar>::alignment, |
| packet_access_bit = (packet_traits<Scalar_>::Vectorizable && |
| (EIGEN_UNALIGNED_VECTORIZE || (int(actual_alignment) >= int(required_alignment)))) |
| ? PacketAccessBit |
| : 0 |
| }; |
| |
| public: |
| typedef Scalar_ Scalar; |
| typedef Dense StorageKind; |
| typedef Eigen::Index StorageIndex; |
| typedef MatrixXpr XprKind; |
| enum { |
| RowsAtCompileTime = Rows_, |
| ColsAtCompileTime = Cols_, |
| MaxRowsAtCompileTime = MaxRows_, |
| MaxColsAtCompileTime = MaxCols_, |
| Flags = compute_matrix_flags(Options_), |
| Options = Options_, |
| InnerStrideAtCompileTime = 1, |
| OuterStrideAtCompileTime = (int(Options) & int(RowMajor)) ? ColsAtCompileTime : RowsAtCompileTime, |
| |
| // FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase |
| EvaluatorFlags = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit, |
| Alignment = actual_alignment |
| }; |
| }; |
| } // namespace internal |
| |
| /** \class Matrix |
| * \ingroup Core_Module |
| * |
| * \brief The matrix class, also used for vectors and row-vectors |
| * |
| * The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen. |
| * Vectors are matrices with one column, and row-vectors are matrices with one row. |
| * |
| * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note"). |
| * |
| * The first three template parameters are required: |
| * \tparam Scalar_ Numeric type, e.g. float, double, int or std::complex<float>. |
| * User defined scalar types are supported as well (see \ref user_defined_scalars "here"). |
| * \tparam Rows_ Number of rows, or \b Dynamic |
| * \tparam Cols_ Number of columns, or \b Dynamic |
| * |
| * The remaining template parameters are optional -- in most cases you don't have to worry about them. |
| * \tparam Options_ A combination of either \b #RowMajor or \b #ColMajor, and of either |
| * \b #AutoAlign or \b #DontAlign. |
| * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter |
| * controls alignment, which is required for vectorization. It defaults to aligning matrices except for fixed sizes that |
| * aren't a multiple of the packet size. \tparam MaxRows_ Maximum number of rows. Defaults to \a Rows_ (\ref maxrows |
| * "note"). \tparam MaxCols_ Maximum number of columns. Defaults to \a Cols_ (\ref maxrows "note"). |
| * |
| * Eigen provides a number of typedefs covering the usual cases. Here are some examples: |
| * |
| * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>) |
| * \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>) |
| * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>) |
| * |
| * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>) |
| * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>) |
| * |
| * \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>) |
| * \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>) |
| * |
| * See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs. |
| * |
| * You can access elements of vectors and matrices using normal subscripting: |
| * |
| * \code |
| * Eigen::VectorXd v(10); |
| * v[0] = 0.1; |
| * v[1] = 0.2; |
| * v(0) = 0.3; |
| * v(1) = 0.4; |
| * |
| * Eigen::MatrixXi m(10, 10); |
| * m(0, 1) = 1; |
| * m(0, 2) = 2; |
| * m(0, 3) = 3; |
| * \endcode |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN. |
| * |
| * <i><b>Some notes:</b></i> |
| * |
| * <dl> |
| * <dt><b>\anchor dense Dense versus sparse:</b></dt> |
| * <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the |
| * Sparse module. |
| * |
| * Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary |
| * contiguous array. This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero |
| * coefficients.</dd> |
| * |
| * <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt> |
| * <dd>Fixed-size means that the numbers of rows and columns are known at compile-time. In this case, Eigen allocates |
| * the array of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, |
| * typically up to 4x4, sometimes up to 16x16. Larger matrices should be declared as dynamic-size even if one happens to |
| * know their size at compile-time. |
| * |
| * Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they |
| * are runtime variables, and the array of coefficients is allocated dynamically on the heap. |
| * |
| * Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of |
| * a std::map. If you want this behavior, see the Sparse module.</dd> |
| * |
| * <dt><b>\anchor maxrows MaxRows_ and MaxCols_:</b></dt> |
| * <dd>In most cases, one just leaves these parameters to the default values. |
| * These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases |
| * when the exact numbers of rows and columns are not known at compile-time, but it is known at compile-time that they |
| * cannot exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case |
| * MaxRows_ and MaxCols_ are the dimensions of the original matrix, while Rows_ and Cols_ are Dynamic.</dd> |
| * </dl> |
| * |
| * <i><b>ABI and storage layout</b></i> |
| * |
| * The table below summarizes the ABI of some possible Matrix instances which is fixed thorough the lifetime of Eigen 3. |
| * <table class="manual"> |
| * <tr><th>Matrix type</th><th>Equivalent C structure</th></tr> |
| * <tr><td>\code Matrix<T,Dynamic,Dynamic> \endcode</td><td>\code |
| * struct { |
| * T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0 |
| * Eigen::Index rows, cols; |
| * }; |
| * \endcode</td></tr> |
| * <tr class="alt"><td>\code |
| * Matrix<T,Dynamic,1> |
| * Matrix<T,1,Dynamic> \endcode</td><td>\code |
| * struct { |
| * T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0 |
| * Eigen::Index size; |
| * }; |
| * \endcode</td></tr> |
| * <tr><td>\code Matrix<T,Rows,Cols> \endcode</td><td>\code |
| * struct { |
| * T data[Rows*Cols]; // with (size_t(data)%A(Rows*Cols*sizeof(T)))==0 |
| * }; |
| * \endcode</td></tr> |
| * <tr class="alt"><td>\code Matrix<T,Dynamic,Dynamic,0,MaxRows,MaxCols> \endcode</td><td>\code |
| * struct { |
| * T data[MaxRows*MaxCols]; // with (size_t(data)%A(MaxRows*MaxCols*sizeof(T)))==0 |
| * Eigen::Index rows, cols; |
| * }; |
| * \endcode</td></tr> |
| * </table> |
| * Note that in this table Rows, Cols, MaxRows and MaxCols are all positive integers. A(S) is defined to the largest |
| * possible power-of-two smaller to EIGEN_MAX_STATIC_ALIGN_BYTES. |
| * |
| * \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy, |
| * \ref TopicStorageOrders |
| */ |
| |
| template <typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_> |
| class Matrix : public PlainObjectBase<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>> { |
| public: |
| /** \brief Base class typedef. |
| * \sa PlainObjectBase |
| */ |
| typedef PlainObjectBase<Matrix> Base; |
| |
| enum { Options = Options_ }; |
| |
| EIGEN_DENSE_PUBLIC_INTERFACE(Matrix) |
| |
| typedef typename Base::PlainObject PlainObject; |
| |
| using Base::base; |
| using Base::coeffRef; |
| |
| /** |
| * \brief Assigns matrices to each other. |
| * |
| * \note This is a special case of the templated operator=. Its purpose is |
| * to prevent a default operator= from hiding the templated operator=. |
| * |
| * \callgraph |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix& operator=(const Matrix& other) { return Base::_set(other); } |
| |
| /** \internal |
| * \brief Copies the value of the expression \a other into \c *this with automatic resizing. |
| * |
| * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), |
| * it will be initialized. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix& operator=(const DenseBase<OtherDerived>& other) { |
| return Base::_set(other); |
| } |
| |
| /* Here, doxygen failed to copy the brief information when using \copydoc */ |
| |
| /** |
| * \brief Copies the generic expression \a other into *this. |
| * \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other) |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase<OtherDerived>& other) { |
| return Base::operator=(other); |
| } |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func) { |
| return Base::operator=(func); |
| } |
| |
| /** \brief Default constructor. |
| * |
| * For fixed-size matrices, does nothing. |
| * |
| * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix |
| * is called a null matrix. This constructor is the unique way to create null matrices: resizing |
| * a matrix to 0 is not supported. |
| * |
| * \sa resize(Index,Index) |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix() |
| : Base(){EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED} |
| |
| // FIXME is it still needed |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr explicit Matrix( |
| internal::constructor_without_unaligned_array_assert) |
| : Base(internal::constructor_without_unaligned_array_assert()){EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix(Matrix && other) |
| EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value) |
| : Base(std::move(other)) {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Matrix& operator=(Matrix&& other) |
| EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) { |
| Base::operator=(std::move(other)); |
| return *this; |
| } |
| |
| /** \copydoc PlainObjectBase(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&... args) |
| * |
| * Example: \include Matrix_variadic_ctor_cxx11.cpp |
| * Output: \verbinclude Matrix_variadic_ctor_cxx11.out |
| * |
| * \sa Matrix(const std::initializer_list<std::initializer_list<Scalar>>&) |
| */ |
| template <typename... ArgTypes> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, |
| const ArgTypes&... args) |
| : Base(a0, a1, a2, a3, args...) {} |
| |
| /** \brief Constructs a Matrix and initializes it from the coefficients given as initializer-lists grouped by row. |
| * \cpp11 |
| * |
| * In the general case, the constructor takes a list of rows, each row being represented as a list of coefficients: |
| * |
| * Example: \include Matrix_initializer_list_23_cxx11.cpp |
| * Output: \verbinclude Matrix_initializer_list_23_cxx11.out |
| * |
| * Each of the inner initializer lists must contain the exact same number of elements, otherwise an assertion is |
| * triggered. |
| * |
| * In the case of a compile-time column vector, implicit transposition from a single row is allowed. |
| * Therefore <code>VectorXd{{1,2,3,4,5}}</code> is legal and the more verbose syntax |
| * <code>RowVectorXd{{1},{2},{3},{4},{5}}</code> can be avoided: |
| * |
| * Example: \include Matrix_initializer_list_vector_cxx11.cpp |
| * Output: \verbinclude Matrix_initializer_list_vector_cxx11.out |
| * |
| * In the case of fixed-sized matrices, the initializer list sizes must exactly match the matrix sizes, |
| * and implicit transposition is allowed for compile-time vectors only. |
| * |
| * \sa Matrix(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args) |
| */ |
| EIGEN_DEVICE_FUNC explicit constexpr EIGEN_STRONG_INLINE Matrix( |
| const std::initializer_list<std::initializer_list<Scalar>>& list) |
| : Base(list) {} |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| |
| // This constructor is for both 1x1 matrices and dynamic vectors |
| template <typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Matrix(const T& x) { |
| Base::template _init1<T>(x); |
| } |
| |
| template <typename T0, typename T1> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y) { |
| Base::template _init2<T0, T1>(x, y); |
| } |
| |
| #else |
| /** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */ |
| EIGEN_DEVICE_FUNC explicit Matrix(const Scalar* data); |
| |
| /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors |
| * |
| * This is useful for dynamic-size vectors. For fixed-size vectors, |
| * it is redundant to pass these parameters, so one should use the default constructor |
| * Matrix() instead. |
| * |
| * \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance, |
| * calling Matrix<double,1,1>(1) will call the initialization constructor: Matrix(const Scalar&). |
| * For fixed-size \c 1x1 matrices it is therefore recommended to use the default |
| * constructor Matrix() instead, especially when using one of the non standard |
| * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives). |
| */ |
| EIGEN_STRONG_INLINE explicit Matrix(Index dim); |
| /** \brief Constructs an initialized 1x1 matrix with the given coefficient |
| * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) */ |
| Matrix(const Scalar& x); |
| /** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns. |
| * |
| * This is useful for dynamic-size matrices. For fixed-size matrices, |
| * it is redundant to pass these parameters, so one should use the default constructor |
| * Matrix() instead. |
| * |
| * \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance, |
| * calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y). |
| * For fixed-size \c 1x2 or \c 2x1 vectors it is therefore recommended to use the default |
| * constructor Matrix() instead, especially when using one of the non standard |
| * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives). |
| */ |
| EIGEN_DEVICE_FUNC Matrix(Index rows, Index cols); |
| |
| /** \brief Constructs an initialized 2D vector with given coefficients |
| * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) */ |
| Matrix(const Scalar& x, const Scalar& y); |
| #endif // end EIGEN_PARSED_BY_DOXYGEN |
| |
| /** \brief Constructs an initialized 3D vector with given coefficients |
| * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3) |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| m_storage.data()[2] = z; |
| } |
| /** \brief Constructs an initialized 4D vector with given coefficients |
| * \sa Matrix(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&...) |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4) |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| m_storage.data()[2] = z; |
| m_storage.data()[3] = w; |
| } |
| |
| /** \brief Copy constructor */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const Matrix& other) : Base(other) {} |
| |
| /** \brief Copy constructor for generic expressions. |
| * \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) |
| */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Matrix(const EigenBase<OtherDerived>& other) : Base(other.derived()) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index innerStride() const EIGEN_NOEXCEPT { return 1; } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index outerStride() const EIGEN_NOEXCEPT { return this->innerSize(); } |
| |
| /////////// Geometry module /////////// |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC explicit Matrix(const RotationBase<OtherDerived, ColsAtCompileTime>& r); |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC Matrix& operator=(const RotationBase<OtherDerived, ColsAtCompileTime>& r); |
| |
| // allow to extend Matrix outside Eigen |
| #ifdef EIGEN_MATRIX_PLUGIN |
| #include EIGEN_MATRIX_PLUGIN |
| #endif |
| |
| protected: |
| template <typename Derived, typename OtherDerived, bool IsVector> |
| friend struct internal::conservative_resize_like_impl; |
| |
| using Base::m_storage; |
| }; |
| |
| /** \defgroup matrixtypedefs Global matrix typedefs |
| * |
| * \ingroup Core_Module |
| * |
| * %Eigen defines several typedef shortcuts for most common matrix and vector types. |
| * |
| * The general patterns are the following: |
| * |
| * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, |
| * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd |
| * for complex double. |
| * |
| * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of |
| * floats. |
| * |
| * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is |
| * a fixed-size vector of 4 complex floats. |
| * |
| * With \cpp11, template alias are also defined for common sizes. |
| * They follow the same pattern as above except that the scalar type suffix is replaced by a |
| * template parameter, i.e.: |
| * - `MatrixSize<Type>` where `Size` can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size. |
| * - `MatrixXSize<Type>` and `MatrixSizeX<Type>` where `Size` can be \c 2,\c 3,\c 4 for hybrid dynamic/fixed matrices. |
| * - `VectorSize<Type>` and `RowVectorSize<Type>` for column and row vectors. |
| * |
| * With \cpp11, you can also use fully generic column and row vector types: `Vector<Type,Size>` and |
| * `RowVector<Type,Size>`. |
| * |
| * \sa class Matrix |
| */ |
| |
| #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief `Size`×`Size` matrix of type `Type`. */ \ |
| typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief `Size`×`1` vector of type `Type`. */ \ |
| typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief `1`×`Size` vector of type `Type`. */ \ |
| typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix; |
| |
| #define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief `Size`×`Dynamic` matrix of type `Type`. */ \ |
| typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief `Dynamic`×`Size` matrix of type `Type`. */ \ |
| typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix; |
| |
| #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ |
| EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ |
| EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ |
| EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4) |
| |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd) |
| |
| #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES |
| #undef EIGEN_MAKE_TYPEDEFS |
| #undef EIGEN_MAKE_FIXED_TYPEDEFS |
| |
| #define EIGEN_MAKE_TYPEDEFS(Size, SizeSuffix) \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief \cpp11 `Size`×`Size` matrix of type `Type`.*/ \ |
| template <typename Type> \ |
| using Matrix##SizeSuffix = Matrix<Type, Size, Size>; \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief \cpp11 `Size`×`1` vector of type `Type`.*/ \ |
| template <typename Type> \ |
| using Vector##SizeSuffix = Matrix<Type, Size, 1>; \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief \cpp11 `1`×`Size` vector of type `Type`.*/ \ |
| template <typename Type> \ |
| using RowVector##SizeSuffix = Matrix<Type, 1, Size>; |
| |
| #define EIGEN_MAKE_FIXED_TYPEDEFS(Size) \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief \cpp11 `Size`×`Dynamic` matrix of type `Type` */ \ |
| template <typename Type> \ |
| using Matrix##Size##X = Matrix<Type, Size, Dynamic>; \ |
| /** \ingroup matrixtypedefs */ \ |
| /** \brief \cpp11 `Dynamic`×`Size` matrix of type `Type`. */ \ |
| template <typename Type> \ |
| using Matrix##X##Size = Matrix<Type, Dynamic, Size>; |
| |
| EIGEN_MAKE_TYPEDEFS(2, 2) |
| EIGEN_MAKE_TYPEDEFS(3, 3) |
| EIGEN_MAKE_TYPEDEFS(4, 4) |
| EIGEN_MAKE_TYPEDEFS(Dynamic, X) |
| EIGEN_MAKE_FIXED_TYPEDEFS(2) |
| EIGEN_MAKE_FIXED_TYPEDEFS(3) |
| EIGEN_MAKE_FIXED_TYPEDEFS(4) |
| |
| /** \ingroup matrixtypedefs |
| * \brief \cpp11 `Size`×`1` vector of type `Type`. */ |
| template <typename Type, int Size> |
| using Vector = Matrix<Type, Size, 1>; |
| |
| /** \ingroup matrixtypedefs |
| * \brief \cpp11 `1`×`Size` vector of type `Type`. */ |
| template <typename Type, int Size> |
| using RowVector = Matrix<Type, 1, Size>; |
| |
| #undef EIGEN_MAKE_TYPEDEFS |
| #undef EIGEN_MAKE_FIXED_TYPEDEFS |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATRIX_H |