| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_REDUX_H |
| #define EIGEN_REDUX_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // TODO |
| // * implement other kind of vectorization |
| // * factorize code |
| |
| /*************************************************************************** |
| * Part 1 : the logic deciding a strategy for vectorization and unrolling |
| ***************************************************************************/ |
| |
| template <typename Func, typename Evaluator> |
| struct redux_traits { |
| public: |
| typedef typename find_best_packet<typename Evaluator::Scalar, Evaluator::SizeAtCompileTime>::type PacketType; |
| enum { |
| PacketSize = unpacket_traits<PacketType>::size, |
| InnerMaxSize = int(Evaluator::IsRowMajor) ? Evaluator::MaxColsAtCompileTime : Evaluator::MaxRowsAtCompileTime, |
| OuterMaxSize = int(Evaluator::IsRowMajor) ? Evaluator::MaxRowsAtCompileTime : Evaluator::MaxColsAtCompileTime, |
| SliceVectorizedWork = int(InnerMaxSize) == Dynamic ? Dynamic |
| : int(OuterMaxSize) == Dynamic ? (int(InnerMaxSize) >= int(PacketSize) ? Dynamic : 0) |
| : (int(InnerMaxSize) / int(PacketSize)) * int(OuterMaxSize) |
| }; |
| |
| enum { |
| MayLinearize = (int(Evaluator::Flags) & LinearAccessBit), |
| MightVectorize = (int(Evaluator::Flags) & ActualPacketAccessBit) && (functor_traits<Func>::PacketAccess), |
| MayLinearVectorize = bool(MightVectorize) && bool(MayLinearize), |
| MaySliceVectorize = bool(MightVectorize) && (int(SliceVectorizedWork) == Dynamic || int(SliceVectorizedWork) >= 3) |
| }; |
| |
| public: |
| enum { |
| Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) |
| : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) |
| : int(MayLinearize) ? int(LinearTraversal) |
| : int(DefaultTraversal) |
| }; |
| |
| public: |
| enum { |
| Cost = Evaluator::SizeAtCompileTime == Dynamic |
| ? HugeCost |
| : int(Evaluator::SizeAtCompileTime) * int(Evaluator::CoeffReadCost) + |
| (Evaluator::SizeAtCompileTime - 1) * functor_traits<Func>::Cost, |
| UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) |
| }; |
| |
| public: |
| enum { Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling }; |
| |
| #ifdef EIGEN_DEBUG_ASSIGN |
| static void debug() { |
| std::cerr << "Xpr: " << typeid(typename Evaluator::XprType).name() << std::endl; |
| std::cerr.setf(std::ios::hex, std::ios::basefield); |
| EIGEN_DEBUG_VAR(Evaluator::Flags) |
| std::cerr.unsetf(std::ios::hex); |
| EIGEN_DEBUG_VAR(InnerMaxSize) |
| EIGEN_DEBUG_VAR(OuterMaxSize) |
| EIGEN_DEBUG_VAR(SliceVectorizedWork) |
| EIGEN_DEBUG_VAR(PacketSize) |
| EIGEN_DEBUG_VAR(MightVectorize) |
| EIGEN_DEBUG_VAR(MayLinearVectorize) |
| EIGEN_DEBUG_VAR(MaySliceVectorize) |
| std::cerr << "Traversal" |
| << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl; |
| EIGEN_DEBUG_VAR(UnrollingLimit) |
| std::cerr << "Unrolling" |
| << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl; |
| std::cerr << std::endl; |
| } |
| #endif |
| }; |
| |
| /*************************************************************************** |
| * Part 2 : unrollers |
| ***************************************************************************/ |
| |
| /*** no vectorization ***/ |
| |
| template <typename Func, typename Evaluator, Index Start, Index Length> |
| struct redux_novec_unroller { |
| static constexpr Index HalfLength = Length / 2; |
| |
| typedef typename Evaluator::Scalar Scalar; |
| |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func) { |
| return func(redux_novec_unroller<Func, Evaluator, Start, HalfLength>::run(eval, func), |
| redux_novec_unroller<Func, Evaluator, Start + HalfLength, Length - HalfLength>::run(eval, func)); |
| } |
| }; |
| |
| template <typename Func, typename Evaluator, Index Start> |
| struct redux_novec_unroller<Func, Evaluator, Start, 1> { |
| static constexpr Index outer = Start / Evaluator::InnerSizeAtCompileTime; |
| static constexpr Index inner = Start % Evaluator::InnerSizeAtCompileTime; |
| |
| typedef typename Evaluator::Scalar Scalar; |
| |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func&) { |
| return eval.coeffByOuterInner(outer, inner); |
| } |
| }; |
| |
| // This is actually dead code and will never be called. It is required |
| // to prevent false warnings regarding failed inlining though |
| // for 0 length run() will never be called at all. |
| template <typename Func, typename Evaluator, Index Start> |
| struct redux_novec_unroller<Func, Evaluator, Start, 0> { |
| typedef typename Evaluator::Scalar Scalar; |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); } |
| }; |
| |
| template <typename Func, typename Evaluator, Index Start, Index Length> |
| struct redux_novec_linear_unroller { |
| static constexpr Index HalfLength = Length / 2; |
| |
| typedef typename Evaluator::Scalar Scalar; |
| |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func) { |
| return func(redux_novec_linear_unroller<Func, Evaluator, Start, HalfLength>::run(eval, func), |
| redux_novec_linear_unroller<Func, Evaluator, Start + HalfLength, Length - HalfLength>::run(eval, func)); |
| } |
| }; |
| |
| template <typename Func, typename Evaluator, Index Start> |
| struct redux_novec_linear_unroller<Func, Evaluator, Start, 1> { |
| typedef typename Evaluator::Scalar Scalar; |
| |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func&) { |
| return eval.coeff(Start); |
| } |
| }; |
| |
| // This is actually dead code and will never be called. It is required |
| // to prevent false warnings regarding failed inlining though |
| // for 0 length run() will never be called at all. |
| template <typename Func, typename Evaluator, Index Start> |
| struct redux_novec_linear_unroller<Func, Evaluator, Start, 0> { |
| typedef typename Evaluator::Scalar Scalar; |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); } |
| }; |
| |
| /*** vectorization ***/ |
| |
| template <typename Func, typename Evaluator, Index Start, Index Length> |
| struct redux_vec_unroller { |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator& eval, const Func& func) { |
| constexpr Index HalfLength = Length / 2; |
| |
| return func.packetOp( |
| redux_vec_unroller<Func, Evaluator, Start, HalfLength>::template run<PacketType>(eval, func), |
| redux_vec_unroller<Func, Evaluator, Start + HalfLength, Length - HalfLength>::template run<PacketType>(eval, |
| func)); |
| } |
| }; |
| |
| template <typename Func, typename Evaluator, Index Start> |
| struct redux_vec_unroller<Func, Evaluator, Start, 1> { |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator& eval, const Func&) { |
| constexpr Index PacketSize = unpacket_traits<PacketType>::size; |
| constexpr Index index = Start * PacketSize; |
| constexpr Index outer = index / int(Evaluator::InnerSizeAtCompileTime); |
| constexpr Index inner = index % int(Evaluator::InnerSizeAtCompileTime); |
| constexpr int alignment = Evaluator::Alignment; |
| |
| return eval.template packetByOuterInner<alignment, PacketType>(outer, inner); |
| } |
| }; |
| |
| template <typename Func, typename Evaluator, Index Start, Index Length> |
| struct redux_vec_linear_unroller { |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator& eval, const Func& func) { |
| constexpr Index HalfLength = Length / 2; |
| |
| return func.packetOp( |
| redux_vec_linear_unroller<Func, Evaluator, Start, HalfLength>::template run<PacketType>(eval, func), |
| redux_vec_linear_unroller<Func, Evaluator, Start + HalfLength, Length - HalfLength>::template run<PacketType>( |
| eval, func)); |
| } |
| }; |
| |
| template <typename Func, typename Evaluator, Index Start> |
| struct redux_vec_linear_unroller<Func, Evaluator, Start, 1> { |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator& eval, const Func&) { |
| constexpr Index PacketSize = unpacket_traits<PacketType>::size; |
| constexpr Index index = (Start * PacketSize); |
| constexpr int alignment = Evaluator::Alignment; |
| return eval.template packet<alignment, PacketType>(index); |
| } |
| }; |
| |
| /*************************************************************************** |
| * Part 3 : implementation of all cases |
| ***************************************************************************/ |
| |
| template <typename Func, typename Evaluator, int Traversal = redux_traits<Func, Evaluator>::Traversal, |
| int Unrolling = redux_traits<Func, Evaluator>::Unrolling> |
| struct redux_impl; |
| |
| template <typename Func, typename Evaluator> |
| struct redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling> { |
| typedef typename Evaluator::Scalar Scalar; |
| |
| template <typename XprType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) { |
| eigen_assert(xpr.rows() > 0 && xpr.cols() > 0 && "you are using an empty matrix"); |
| Scalar res = eval.coeffByOuterInner(0, 0); |
| for (Index i = 1; i < xpr.innerSize(); ++i) res = func(res, eval.coeffByOuterInner(0, i)); |
| for (Index i = 1; i < xpr.outerSize(); ++i) |
| for (Index j = 0; j < xpr.innerSize(); ++j) res = func(res, eval.coeffByOuterInner(i, j)); |
| return res; |
| } |
| }; |
| |
| template <typename Func, typename Evaluator> |
| struct redux_impl<Func, Evaluator, LinearTraversal, NoUnrolling> { |
| typedef typename Evaluator::Scalar Scalar; |
| |
| template <typename XprType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) { |
| eigen_assert(xpr.size() > 0 && "you are using an empty matrix"); |
| Scalar res = eval.coeff(0); |
| for (Index k = 1; k < xpr.size(); ++k) res = func(res, eval.coeff(k)); |
| return res; |
| } |
| }; |
| |
| template <typename Func, typename Evaluator> |
| struct redux_impl<Func, Evaluator, DefaultTraversal, CompleteUnrolling> |
| : redux_novec_unroller<Func, Evaluator, 0, Evaluator::SizeAtCompileTime> { |
| typedef redux_novec_unroller<Func, Evaluator, 0, Evaluator::SizeAtCompileTime> Base; |
| typedef typename Evaluator::Scalar Scalar; |
| template <typename XprType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func, |
| const XprType& /*xpr*/) { |
| return Base::run(eval, func); |
| } |
| }; |
| |
| template <typename Func, typename Evaluator> |
| struct redux_impl<Func, Evaluator, LinearTraversal, CompleteUnrolling> |
| : redux_novec_linear_unroller<Func, Evaluator, 0, Evaluator::SizeAtCompileTime> { |
| typedef redux_novec_linear_unroller<Func, Evaluator, 0, Evaluator::SizeAtCompileTime> Base; |
| typedef typename Evaluator::Scalar Scalar; |
| template <typename XprType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func, |
| const XprType& /*xpr*/) { |
| return Base::run(eval, func); |
| } |
| }; |
| |
| template <typename Func, typename Evaluator> |
| struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, NoUnrolling> { |
| typedef typename Evaluator::Scalar Scalar; |
| typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar; |
| |
| template <typename XprType> |
| static Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) { |
| const Index size = xpr.size(); |
| |
| constexpr Index packetSize = redux_traits<Func, Evaluator>::PacketSize; |
| constexpr int packetAlignment = unpacket_traits<PacketScalar>::alignment; |
| constexpr int alignment0 = |
| (bool(Evaluator::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) |
| ? int(packetAlignment) |
| : int(Unaligned); |
| constexpr int alignment = plain_enum_max(alignment0, Evaluator::Alignment); |
| const Index alignedStart = internal::first_default_aligned(xpr); |
| const Index alignedSize2 = ((size - alignedStart) / (2 * packetSize)) * (2 * packetSize); |
| const Index alignedSize = ((size - alignedStart) / (packetSize)) * (packetSize); |
| const Index alignedEnd2 = alignedStart + alignedSize2; |
| const Index alignedEnd = alignedStart + alignedSize; |
| Scalar res; |
| if (alignedSize) { |
| PacketScalar packet_res0 = eval.template packet<alignment, PacketScalar>(alignedStart); |
| if (alignedSize > packetSize) // we have at least two packets to partly unroll the loop |
| { |
| PacketScalar packet_res1 = eval.template packet<alignment, PacketScalar>(alignedStart + packetSize); |
| for (Index index = alignedStart + 2 * packetSize; index < alignedEnd2; index += 2 * packetSize) { |
| packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment, PacketScalar>(index)); |
| packet_res1 = func.packetOp(packet_res1, eval.template packet<alignment, PacketScalar>(index + packetSize)); |
| } |
| |
| packet_res0 = func.packetOp(packet_res0, packet_res1); |
| if (alignedEnd > alignedEnd2) |
| packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment, PacketScalar>(alignedEnd2)); |
| } |
| res = func.predux(packet_res0); |
| |
| for (Index index = 0; index < alignedStart; ++index) res = func(res, eval.coeff(index)); |
| |
| for (Index index = alignedEnd; index < size; ++index) res = func(res, eval.coeff(index)); |
| } else // too small to vectorize anything. |
| // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
| { |
| res = eval.coeff(0); |
| for (Index index = 1; index < size; ++index) res = func(res, eval.coeff(index)); |
| } |
| |
| return res; |
| } |
| }; |
| |
| // NOTE: for SliceVectorizedTraversal we simply bypass unrolling |
| template <typename Func, typename Evaluator, int Unrolling> |
| struct redux_impl<Func, Evaluator, SliceVectorizedTraversal, Unrolling> { |
| typedef typename Evaluator::Scalar Scalar; |
| typedef typename redux_traits<Func, Evaluator>::PacketType PacketType; |
| |
| template <typename XprType> |
| EIGEN_DEVICE_FUNC static Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) { |
| eigen_assert(xpr.rows() > 0 && xpr.cols() > 0 && "you are using an empty matrix"); |
| constexpr Index packetSize = redux_traits<Func, Evaluator>::PacketSize; |
| const Index innerSize = xpr.innerSize(); |
| const Index outerSize = xpr.outerSize(); |
| const Index packetedInnerSize = ((innerSize) / packetSize) * packetSize; |
| Scalar res; |
| if (packetedInnerSize) { |
| PacketType packet_res = eval.template packet<Unaligned, PacketType>(0, 0); |
| for (Index j = 0; j < outerSize; ++j) |
| for (Index i = (j == 0 ? packetSize : 0); i < packetedInnerSize; i += Index(packetSize)) |
| packet_res = func.packetOp(packet_res, eval.template packetByOuterInner<Unaligned, PacketType>(j, i)); |
| |
| res = func.predux(packet_res); |
| for (Index j = 0; j < outerSize; ++j) |
| for (Index i = packetedInnerSize; i < innerSize; ++i) res = func(res, eval.coeffByOuterInner(j, i)); |
| } else // too small to vectorize anything. |
| // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
| { |
| res = redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>::run(eval, func, xpr); |
| } |
| |
| return res; |
| } |
| }; |
| |
| template <typename Func, typename Evaluator> |
| struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling> { |
| typedef typename Evaluator::Scalar Scalar; |
| |
| typedef typename redux_traits<Func, Evaluator>::PacketType PacketType; |
| static constexpr Index PacketSize = redux_traits<Func, Evaluator>::PacketSize; |
| static constexpr Index Size = Evaluator::SizeAtCompileTime; |
| static constexpr Index VectorizedSize = (int(Size) / int(PacketSize)) * int(PacketSize); |
| |
| template <typename XprType> |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) { |
| EIGEN_ONLY_USED_FOR_DEBUG(xpr) |
| eigen_assert(xpr.rows() > 0 && xpr.cols() > 0 && "you are using an empty matrix"); |
| if (VectorizedSize > 0) { |
| Scalar res = func.predux( |
| redux_vec_linear_unroller<Func, Evaluator, 0, Size / PacketSize>::template run<PacketType>(eval, func)); |
| if (VectorizedSize != Size) |
| res = func( |
| res, redux_novec_linear_unroller<Func, Evaluator, VectorizedSize, Size - VectorizedSize>::run(eval, func)); |
| return res; |
| } else { |
| return redux_novec_linear_unroller<Func, Evaluator, 0, Size>::run(eval, func); |
| } |
| } |
| }; |
| |
| // evaluator adaptor |
| template <typename XprType_> |
| class redux_evaluator : public internal::evaluator<XprType_> { |
| typedef internal::evaluator<XprType_> Base; |
| |
| public: |
| typedef XprType_ XprType; |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit redux_evaluator(const XprType& xpr) : Base(xpr) {} |
| |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename XprType::PacketScalar PacketScalar; |
| |
| enum { |
| MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = XprType::MaxColsAtCompileTime, |
| // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime |
| // from the evaluator |
| Flags = Base::Flags & ~DirectAccessBit, |
| IsRowMajor = XprType::IsRowMajor, |
| SizeAtCompileTime = XprType::SizeAtCompileTime, |
| InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime |
| }; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const { |
| return Base::coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); |
| } |
| |
| template <int LoadMode, typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketType packetByOuterInner(Index outer, Index inner) const { |
| return Base::template packet<LoadMode, PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /*************************************************************************** |
| * Part 4 : public API |
| ***************************************************************************/ |
| |
| /** \returns the result of a full redux operation on the whole matrix or vector using \a func |
| * |
| * The template parameter \a BinaryOp is the type of the functor \a func which must be |
| * an associative operator. Both current C++98 and C++11 functor styles are handled. |
| * |
| * \warning the matrix must be not empty, otherwise an assertion is triggered. |
| * |
| * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() |
| */ |
| template <typename Derived> |
| template <typename Func> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::redux( |
| const Func& func) const { |
| eigen_assert(this->rows() > 0 && this->cols() > 0 && "you are using an empty matrix"); |
| |
| typedef typename internal::redux_evaluator<Derived> ThisEvaluator; |
| ThisEvaluator thisEval(derived()); |
| |
| // The initial expression is passed to the reducer as an additional argument instead of |
| // passing it as a member of redux_evaluator to help |
| return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func, derived()); |
| } |
| |
| /** \returns the minimum of all coefficients of \c *this. |
| * In case \c *this contains NaN, NaNPropagation determines the behavior: |
| * NaNPropagation == PropagateFast : undefined |
| * NaNPropagation == PropagateNaN : result is NaN |
| * NaNPropagation == PropagateNumbers : result is minimum of elements that are not NaN |
| * \warning the matrix must be not empty, otherwise an assertion is triggered. |
| */ |
| template <typename Derived> |
| template <int NaNPropagation> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::minCoeff() const { |
| return derived().redux(Eigen::internal::scalar_min_op<Scalar, Scalar, NaNPropagation>()); |
| } |
| |
| /** \returns the maximum of all coefficients of \c *this. |
| * In case \c *this contains NaN, NaNPropagation determines the behavior: |
| * NaNPropagation == PropagateFast : undefined |
| * NaNPropagation == PropagateNaN : result is NaN |
| * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN |
| * \warning the matrix must be not empty, otherwise an assertion is triggered. |
| */ |
| template <typename Derived> |
| template <int NaNPropagation> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::maxCoeff() const { |
| return derived().redux(Eigen::internal::scalar_max_op<Scalar, Scalar, NaNPropagation>()); |
| } |
| |
| /** \returns the sum of all coefficients of \c *this |
| * |
| * If \c *this is empty, then the value 0 is returned. |
| * |
| * \sa trace(), prod(), mean() |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::sum() const { |
| if (SizeAtCompileTime == 0 || (SizeAtCompileTime == Dynamic && size() == 0)) return Scalar(0); |
| return derived().redux(Eigen::internal::scalar_sum_op<Scalar, Scalar>()); |
| } |
| |
| /** \returns the mean of all coefficients of *this |
| * |
| * \sa trace(), prod(), sum() |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::mean() const { |
| #ifdef __INTEL_COMPILER |
| #pragma warning push |
| #pragma warning(disable : 2259) |
| #endif |
| return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar, Scalar>())) / Scalar(this->size()); |
| #ifdef __INTEL_COMPILER |
| #pragma warning pop |
| #endif |
| } |
| |
| /** \returns the product of all coefficients of *this |
| * |
| * Example: \include MatrixBase_prod.cpp |
| * Output: \verbinclude MatrixBase_prod.out |
| * |
| * \sa sum(), mean(), trace() |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::prod() const { |
| if (SizeAtCompileTime == 0 || (SizeAtCompileTime == Dynamic && size() == 0)) return Scalar(1); |
| return derived().redux(Eigen::internal::scalar_product_op<Scalar>()); |
| } |
| |
| /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. |
| * |
| * \c *this can be any matrix, not necessarily square. |
| * |
| * \sa diagonal(), sum() |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar MatrixBase<Derived>::trace() const { |
| return derived().diagonal().sum(); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_REDUX_H |