blob: 0c5f2d9f6b6859bb8cfa4c23e8ee96f3fb957df9 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REDUX_H
#define EIGEN_REDUX_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
// TODO
// * implement other kind of vectorization
// * factorize code
/***************************************************************************
* Part 1 : the logic deciding a strategy for vectorization and unrolling
***************************************************************************/
template <typename Func, typename Evaluator>
struct redux_traits {
public:
typedef typename find_best_packet<typename Evaluator::Scalar, Evaluator::SizeAtCompileTime>::type PacketType;
enum {
PacketSize = unpacket_traits<PacketType>::size,
InnerMaxSize = int(Evaluator::IsRowMajor) ? Evaluator::MaxColsAtCompileTime : Evaluator::MaxRowsAtCompileTime,
OuterMaxSize = int(Evaluator::IsRowMajor) ? Evaluator::MaxRowsAtCompileTime : Evaluator::MaxColsAtCompileTime,
SliceVectorizedWork = int(InnerMaxSize) == Dynamic ? Dynamic
: int(OuterMaxSize) == Dynamic ? (int(InnerMaxSize) >= int(PacketSize) ? Dynamic : 0)
: (int(InnerMaxSize) / int(PacketSize)) * int(OuterMaxSize)
};
enum {
MayLinearize = (int(Evaluator::Flags) & LinearAccessBit),
MightVectorize = (int(Evaluator::Flags) & ActualPacketAccessBit) && (functor_traits<Func>::PacketAccess),
MayLinearVectorize = bool(MightVectorize) && bool(MayLinearize),
MaySliceVectorize = bool(MightVectorize) && (int(SliceVectorizedWork) == Dynamic || int(SliceVectorizedWork) >= 3)
};
public:
enum {
Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal)
};
public:
enum {
Cost = Evaluator::SizeAtCompileTime == Dynamic
? HugeCost
: int(Evaluator::SizeAtCompileTime) * int(Evaluator::CoeffReadCost) +
(Evaluator::SizeAtCompileTime - 1) * functor_traits<Func>::Cost,
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
};
public:
enum { Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling };
#ifdef EIGEN_DEBUG_ASSIGN
static void debug() {
std::cerr << "Xpr: " << typeid(typename Evaluator::XprType).name() << std::endl;
std::cerr.setf(std::ios::hex, std::ios::basefield);
EIGEN_DEBUG_VAR(Evaluator::Flags)
std::cerr.unsetf(std::ios::hex);
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(OuterMaxSize)
EIGEN_DEBUG_VAR(SliceVectorizedWork)
EIGEN_DEBUG_VAR(PacketSize)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
std::cerr << "Traversal"
<< " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl;
EIGEN_DEBUG_VAR(UnrollingLimit)
std::cerr << "Unrolling"
<< " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl;
std::cerr << std::endl;
}
#endif
};
/***************************************************************************
* Part 2 : unrollers
***************************************************************************/
/*** no vectorization ***/
template <typename Func, typename Evaluator, Index Start, Index Length>
struct redux_novec_unroller {
static constexpr Index HalfLength = Length / 2;
typedef typename Evaluator::Scalar Scalar;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func) {
return func(redux_novec_unroller<Func, Evaluator, Start, HalfLength>::run(eval, func),
redux_novec_unroller<Func, Evaluator, Start + HalfLength, Length - HalfLength>::run(eval, func));
}
};
template <typename Func, typename Evaluator, Index Start>
struct redux_novec_unroller<Func, Evaluator, Start, 1> {
static constexpr Index outer = Start / Evaluator::InnerSizeAtCompileTime;
static constexpr Index inner = Start % Evaluator::InnerSizeAtCompileTime;
typedef typename Evaluator::Scalar Scalar;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func&) {
return eval.coeffByOuterInner(outer, inner);
}
};
// This is actually dead code and will never be called. It is required
// to prevent false warnings regarding failed inlining though
// for 0 length run() will never be called at all.
template <typename Func, typename Evaluator, Index Start>
struct redux_novec_unroller<Func, Evaluator, Start, 0> {
typedef typename Evaluator::Scalar Scalar;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); }
};
template <typename Func, typename Evaluator, Index Start, Index Length>
struct redux_novec_linear_unroller {
static constexpr Index HalfLength = Length / 2;
typedef typename Evaluator::Scalar Scalar;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func) {
return func(redux_novec_linear_unroller<Func, Evaluator, Start, HalfLength>::run(eval, func),
redux_novec_linear_unroller<Func, Evaluator, Start + HalfLength, Length - HalfLength>::run(eval, func));
}
};
template <typename Func, typename Evaluator, Index Start>
struct redux_novec_linear_unroller<Func, Evaluator, Start, 1> {
typedef typename Evaluator::Scalar Scalar;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func&) {
return eval.coeff(Start);
}
};
// This is actually dead code and will never be called. It is required
// to prevent false warnings regarding failed inlining though
// for 0 length run() will never be called at all.
template <typename Func, typename Evaluator, Index Start>
struct redux_novec_linear_unroller<Func, Evaluator, Start, 0> {
typedef typename Evaluator::Scalar Scalar;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); }
};
/*** vectorization ***/
template <typename Func, typename Evaluator, Index Start, Index Length>
struct redux_vec_unroller {
template <typename PacketType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator& eval, const Func& func) {
constexpr Index HalfLength = Length / 2;
return func.packetOp(
redux_vec_unroller<Func, Evaluator, Start, HalfLength>::template run<PacketType>(eval, func),
redux_vec_unroller<Func, Evaluator, Start + HalfLength, Length - HalfLength>::template run<PacketType>(eval,
func));
}
};
template <typename Func, typename Evaluator, Index Start>
struct redux_vec_unroller<Func, Evaluator, Start, 1> {
template <typename PacketType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator& eval, const Func&) {
constexpr Index PacketSize = unpacket_traits<PacketType>::size;
constexpr Index index = Start * PacketSize;
constexpr Index outer = index / int(Evaluator::InnerSizeAtCompileTime);
constexpr Index inner = index % int(Evaluator::InnerSizeAtCompileTime);
constexpr int alignment = Evaluator::Alignment;
return eval.template packetByOuterInner<alignment, PacketType>(outer, inner);
}
};
template <typename Func, typename Evaluator, Index Start, Index Length>
struct redux_vec_linear_unroller {
template <typename PacketType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator& eval, const Func& func) {
constexpr Index HalfLength = Length / 2;
return func.packetOp(
redux_vec_linear_unroller<Func, Evaluator, Start, HalfLength>::template run<PacketType>(eval, func),
redux_vec_linear_unroller<Func, Evaluator, Start + HalfLength, Length - HalfLength>::template run<PacketType>(
eval, func));
}
};
template <typename Func, typename Evaluator, Index Start>
struct redux_vec_linear_unroller<Func, Evaluator, Start, 1> {
template <typename PacketType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE PacketType run(const Evaluator& eval, const Func&) {
constexpr Index PacketSize = unpacket_traits<PacketType>::size;
constexpr Index index = (Start * PacketSize);
constexpr int alignment = Evaluator::Alignment;
return eval.template packet<alignment, PacketType>(index);
}
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
template <typename Func, typename Evaluator, int Traversal = redux_traits<Func, Evaluator>::Traversal,
int Unrolling = redux_traits<Func, Evaluator>::Unrolling>
struct redux_impl;
template <typename Func, typename Evaluator>
struct redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling> {
typedef typename Evaluator::Scalar Scalar;
template <typename XprType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) {
eigen_assert(xpr.rows() > 0 && xpr.cols() > 0 && "you are using an empty matrix");
Scalar res = eval.coeffByOuterInner(0, 0);
for (Index i = 1; i < xpr.innerSize(); ++i) res = func(res, eval.coeffByOuterInner(0, i));
for (Index i = 1; i < xpr.outerSize(); ++i)
for (Index j = 0; j < xpr.innerSize(); ++j) res = func(res, eval.coeffByOuterInner(i, j));
return res;
}
};
template <typename Func, typename Evaluator>
struct redux_impl<Func, Evaluator, LinearTraversal, NoUnrolling> {
typedef typename Evaluator::Scalar Scalar;
template <typename XprType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) {
eigen_assert(xpr.size() > 0 && "you are using an empty matrix");
Scalar res = eval.coeff(0);
for (Index k = 1; k < xpr.size(); ++k) res = func(res, eval.coeff(k));
return res;
}
};
template <typename Func, typename Evaluator>
struct redux_impl<Func, Evaluator, DefaultTraversal, CompleteUnrolling>
: redux_novec_unroller<Func, Evaluator, 0, Evaluator::SizeAtCompileTime> {
typedef redux_novec_unroller<Func, Evaluator, 0, Evaluator::SizeAtCompileTime> Base;
typedef typename Evaluator::Scalar Scalar;
template <typename XprType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func,
const XprType& /*xpr*/) {
return Base::run(eval, func);
}
};
template <typename Func, typename Evaluator>
struct redux_impl<Func, Evaluator, LinearTraversal, CompleteUnrolling>
: redux_novec_linear_unroller<Func, Evaluator, 0, Evaluator::SizeAtCompileTime> {
typedef redux_novec_linear_unroller<Func, Evaluator, 0, Evaluator::SizeAtCompileTime> Base;
typedef typename Evaluator::Scalar Scalar;
template <typename XprType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func,
const XprType& /*xpr*/) {
return Base::run(eval, func);
}
};
template <typename Func, typename Evaluator>
struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, NoUnrolling> {
typedef typename Evaluator::Scalar Scalar;
typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar;
template <typename XprType>
static Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) {
const Index size = xpr.size();
constexpr Index packetSize = redux_traits<Func, Evaluator>::PacketSize;
constexpr int packetAlignment = unpacket_traits<PacketScalar>::alignment;
constexpr int alignment0 =
(bool(Evaluator::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar))
? int(packetAlignment)
: int(Unaligned);
constexpr int alignment = plain_enum_max(alignment0, Evaluator::Alignment);
const Index alignedStart = internal::first_default_aligned(xpr);
const Index alignedSize2 = ((size - alignedStart) / (2 * packetSize)) * (2 * packetSize);
const Index alignedSize = ((size - alignedStart) / (packetSize)) * (packetSize);
const Index alignedEnd2 = alignedStart + alignedSize2;
const Index alignedEnd = alignedStart + alignedSize;
Scalar res;
if (alignedSize) {
PacketScalar packet_res0 = eval.template packet<alignment, PacketScalar>(alignedStart);
if (alignedSize > packetSize) // we have at least two packets to partly unroll the loop
{
PacketScalar packet_res1 = eval.template packet<alignment, PacketScalar>(alignedStart + packetSize);
for (Index index = alignedStart + 2 * packetSize; index < alignedEnd2; index += 2 * packetSize) {
packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment, PacketScalar>(index));
packet_res1 = func.packetOp(packet_res1, eval.template packet<alignment, PacketScalar>(index + packetSize));
}
packet_res0 = func.packetOp(packet_res0, packet_res1);
if (alignedEnd > alignedEnd2)
packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment, PacketScalar>(alignedEnd2));
}
res = func.predux(packet_res0);
for (Index index = 0; index < alignedStart; ++index) res = func(res, eval.coeff(index));
for (Index index = alignedEnd; index < size; ++index) res = func(res, eval.coeff(index));
} else // too small to vectorize anything.
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
{
res = eval.coeff(0);
for (Index index = 1; index < size; ++index) res = func(res, eval.coeff(index));
}
return res;
}
};
// NOTE: for SliceVectorizedTraversal we simply bypass unrolling
template <typename Func, typename Evaluator, int Unrolling>
struct redux_impl<Func, Evaluator, SliceVectorizedTraversal, Unrolling> {
typedef typename Evaluator::Scalar Scalar;
typedef typename redux_traits<Func, Evaluator>::PacketType PacketType;
template <typename XprType>
EIGEN_DEVICE_FUNC static Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) {
eigen_assert(xpr.rows() > 0 && xpr.cols() > 0 && "you are using an empty matrix");
constexpr Index packetSize = redux_traits<Func, Evaluator>::PacketSize;
const Index innerSize = xpr.innerSize();
const Index outerSize = xpr.outerSize();
const Index packetedInnerSize = ((innerSize) / packetSize) * packetSize;
Scalar res;
if (packetedInnerSize) {
PacketType packet_res = eval.template packet<Unaligned, PacketType>(0, 0);
for (Index j = 0; j < outerSize; ++j)
for (Index i = (j == 0 ? packetSize : 0); i < packetedInnerSize; i += Index(packetSize))
packet_res = func.packetOp(packet_res, eval.template packetByOuterInner<Unaligned, PacketType>(j, i));
res = func.predux(packet_res);
for (Index j = 0; j < outerSize; ++j)
for (Index i = packetedInnerSize; i < innerSize; ++i) res = func(res, eval.coeffByOuterInner(j, i));
} else // too small to vectorize anything.
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
{
res = redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>::run(eval, func, xpr);
}
return res;
}
};
template <typename Func, typename Evaluator>
struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling> {
typedef typename Evaluator::Scalar Scalar;
typedef typename redux_traits<Func, Evaluator>::PacketType PacketType;
static constexpr Index PacketSize = redux_traits<Func, Evaluator>::PacketSize;
static constexpr Index Size = Evaluator::SizeAtCompileTime;
static constexpr Index VectorizedSize = (int(Size) / int(PacketSize)) * int(PacketSize);
template <typename XprType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Evaluator& eval, const Func& func, const XprType& xpr) {
EIGEN_ONLY_USED_FOR_DEBUG(xpr)
eigen_assert(xpr.rows() > 0 && xpr.cols() > 0 && "you are using an empty matrix");
if (VectorizedSize > 0) {
Scalar res = func.predux(
redux_vec_linear_unroller<Func, Evaluator, 0, Size / PacketSize>::template run<PacketType>(eval, func));
if (VectorizedSize != Size)
res = func(
res, redux_novec_linear_unroller<Func, Evaluator, VectorizedSize, Size - VectorizedSize>::run(eval, func));
return res;
} else {
return redux_novec_linear_unroller<Func, Evaluator, 0, Size>::run(eval, func);
}
}
};
// evaluator adaptor
template <typename XprType_>
class redux_evaluator : public internal::evaluator<XprType_> {
typedef internal::evaluator<XprType_> Base;
public:
typedef XprType_ XprType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit redux_evaluator(const XprType& xpr) : Base(xpr) {}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketScalar PacketScalar;
enum {
MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = XprType::MaxColsAtCompileTime,
// TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime
// from the evaluator
Flags = Base::Flags & ~DirectAccessBit,
IsRowMajor = XprType::IsRowMajor,
SizeAtCompileTime = XprType::SizeAtCompileTime,
InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const {
return Base::coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer);
}
template <int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketType packetByOuterInner(Index outer, Index inner) const {
return Base::template packet<LoadMode, PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer);
}
};
} // end namespace internal
/***************************************************************************
* Part 4 : public API
***************************************************************************/
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
*
* The template parameter \a BinaryOp is the type of the functor \a func which must be
* an associative operator. Both current C++98 and C++11 functor styles are handled.
*
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*
* \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
*/
template <typename Derived>
template <typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::redux(
const Func& func) const {
eigen_assert(this->rows() > 0 && this->cols() > 0 && "you are using an empty matrix");
typedef typename internal::redux_evaluator<Derived> ThisEvaluator;
ThisEvaluator thisEval(derived());
// The initial expression is passed to the reducer as an additional argument instead of
// passing it as a member of redux_evaluator to help
return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func, derived());
}
/** \returns the minimum of all coefficients of \c *this.
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is minimum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*/
template <typename Derived>
template <int NaNPropagation>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::minCoeff() const {
return derived().redux(Eigen::internal::scalar_min_op<Scalar, Scalar, NaNPropagation>());
}
/** \returns the maximum of all coefficients of \c *this.
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*/
template <typename Derived>
template <int NaNPropagation>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::maxCoeff() const {
return derived().redux(Eigen::internal::scalar_max_op<Scalar, Scalar, NaNPropagation>());
}
/** \returns the sum of all coefficients of \c *this
*
* If \c *this is empty, then the value 0 is returned.
*
* \sa trace(), prod(), mean()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::sum() const {
if (SizeAtCompileTime == 0 || (SizeAtCompileTime == Dynamic && size() == 0)) return Scalar(0);
return derived().redux(Eigen::internal::scalar_sum_op<Scalar, Scalar>());
}
/** \returns the mean of all coefficients of *this
*
* \sa trace(), prod(), sum()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::mean() const {
#ifdef __INTEL_COMPILER
#pragma warning push
#pragma warning(disable : 2259)
#endif
return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar, Scalar>())) / Scalar(this->size());
#ifdef __INTEL_COMPILER
#pragma warning pop
#endif
}
/** \returns the product of all coefficients of *this
*
* Example: \include MatrixBase_prod.cpp
* Output: \verbinclude MatrixBase_prod.out
*
* \sa sum(), mean(), trace()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar DenseBase<Derived>::prod() const {
if (SizeAtCompileTime == 0 || (SizeAtCompileTime == Dynamic && size() == 0)) return Scalar(1);
return derived().redux(Eigen::internal::scalar_product_op<Scalar>());
}
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
*
* \c *this can be any matrix, not necessarily square.
*
* \sa diagonal(), sum()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar MatrixBase<Derived>::trace() const {
return derived().diagonal().sum();
}
} // end namespace Eigen
#endif // EIGEN_REDUX_H