| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H |
| |
| namespace Eigen { |
| |
| /** \class TensorConcatenationOp |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Tensor concatenation class. |
| * |
| * |
| */ |
| namespace internal { |
| template<typename Axis, typename LhsXprType, typename RhsXprType> |
| struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> > |
| { |
| // Type promotion to handle the case where the types of the lhs and the rhs are different. |
| typedef typename promote_storage_type<typename LhsXprType::Scalar, |
| typename RhsXprType::Scalar>::ret Scalar; |
| typedef typename packet_traits<Scalar>::type Packet; |
| typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind, |
| typename traits<RhsXprType>::StorageKind>::ret StorageKind; |
| typedef typename promote_index_type<typename traits<LhsXprType>::Index, |
| typename traits<RhsXprType>::Index>::type Index; |
| typedef typename LhsXprType::Nested LhsNested; |
| typedef typename RhsXprType::Nested RhsNested; |
| typedef typename remove_reference<LhsNested>::type _LhsNested; |
| typedef typename remove_reference<RhsNested>::type _RhsNested; |
| enum { Flags = 0 }; |
| }; |
| |
| template<typename Axis, typename LhsXprType, typename RhsXprType> |
| struct eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, Eigen::Dense> |
| { |
| typedef const TensorConcatenationOp<Axis, LhsXprType, RhsXprType>& type; |
| }; |
| |
| template<typename Axis, typename LhsXprType, typename RhsXprType> |
| struct nested<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, 1, typename eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >::type> |
| { |
| typedef TensorConcatenationOp<Axis, LhsXprType, RhsXprType> type; |
| }; |
| |
| } // end namespace internal |
| |
| |
| template<typename Axis, typename LhsXprType, typename RhsXprType> |
| class TensorConcatenationOp : public TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors> |
| { |
| public: |
| typedef typename internal::traits<TensorConcatenationOp>::Scalar Scalar; |
| typedef typename internal::traits<TensorConcatenationOp>::Packet Packet; |
| typedef typename internal::traits<TensorConcatenationOp>::StorageKind StorageKind; |
| typedef typename internal::traits<TensorConcatenationOp>::Index Index; |
| typedef typename internal::nested<TensorConcatenationOp>::type Nested; |
| typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType, |
| typename RhsXprType::CoeffReturnType>::ret CoeffReturnType; |
| typedef typename internal::promote_storage_type<typename LhsXprType::PacketReturnType, |
| typename RhsXprType::PacketReturnType>::ret PacketReturnType; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp(const LhsXprType& lhs, const RhsXprType& rhs, Axis axis) |
| : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_axis(axis) {} |
| |
| EIGEN_DEVICE_FUNC |
| const typename internal::remove_all<typename LhsXprType::Nested>::type& |
| lhsExpression() const { return m_lhs_xpr; } |
| |
| EIGEN_DEVICE_FUNC |
| const typename internal::remove_all<typename RhsXprType::Nested>::type& |
| rhsExpression() const { return m_rhs_xpr; } |
| |
| EIGEN_DEVICE_FUNC Axis axis() const { return m_axis; } |
| |
| protected: |
| typename LhsXprType::Nested m_lhs_xpr; |
| typename RhsXprType::Nested m_rhs_xpr; |
| const Axis m_axis; |
| }; |
| |
| |
| // Eval as rvalue |
| template<typename Axis, typename LeftArgType, typename RightArgType, typename Device> |
| struct TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> |
| { |
| typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType; |
| typedef typename XprType::Index Index; |
| static const int NumDims = internal::array_size<typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value; |
| static const int RightNumDims = internal::array_size<typename TensorEvaluator<RightArgType, Device>::Dimensions>::value; |
| typedef DSizes<Index, NumDims> Dimensions; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename XprType::PacketReturnType PacketReturnType; |
| enum { |
| IsAligned = false, |
| PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess, |
| }; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) |
| : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis()) |
| { |
| EIGEN_STATIC_ASSERT(NumDims == RightNumDims, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| eigen_assert(0 <= m_axis && m_axis < NumDims); |
| const Dimensions& lhs_dims = m_leftImpl.dimensions(); |
| const Dimensions& rhs_dims = m_rightImpl.dimensions(); |
| int i = 0; |
| for (; i < m_axis; ++i) { |
| eigen_assert(lhs_dims[i] > 0); |
| eigen_assert(lhs_dims[i] == rhs_dims[i]); |
| m_dimensions[i] = lhs_dims[i]; |
| } |
| eigen_assert(lhs_dims[i] > 0); // Now i == m_axis. |
| eigen_assert(rhs_dims[i] > 0); |
| m_dimensions[i] = lhs_dims[i] + rhs_dims[i]; |
| for (++i; i < NumDims; ++i) { |
| eigen_assert(lhs_dims[i] > 0); |
| eigen_assert(lhs_dims[i] == rhs_dims[i]); |
| m_dimensions[i] = lhs_dims[i]; |
| } |
| |
| m_leftStrides[0] = 1; |
| m_rightStrides[0] = 1; |
| m_outputStrides[0] = 1; |
| for (int i = 1; i < NumDims; ++i) { |
| m_leftStrides[i] = m_leftStrides[i-1] * lhs_dims[i-1]; |
| m_rightStrides[i] = m_rightStrides[i-1] * rhs_dims[i-1]; |
| m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } |
| |
| // TODO(phli): Add short-circuit memcpy evaluation if underlying data are linear? |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) |
| { |
| m_leftImpl.evalSubExprsIfNeeded(NULL); |
| m_rightImpl.evalSubExprsIfNeeded(NULL); |
| return true; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() |
| { |
| m_leftImpl.cleanup(); |
| m_rightImpl.cleanup(); |
| } |
| |
| // TODO(phli): attempt to speed this up. The integer divisions and modulo are slow. |
| // See CL/76180724 comments for more ideas. |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const |
| { |
| // Collect dimension-wise indices (subs). |
| array<Index, NumDims> subs; |
| for (int i = NumDims - 1; i > 0; --i) { |
| subs[i] = index / m_outputStrides[i]; |
| index -= subs[i] * m_outputStrides[i]; |
| } |
| subs[0] = index; |
| |
| const Dimensions& left_dims = m_leftImpl.dimensions(); |
| if (subs[m_axis] < left_dims[m_axis]) { |
| Index left_index = subs[0]; |
| for (int i = 1; i < NumDims; ++i) { |
| left_index += (subs[i] % left_dims[i]) * m_leftStrides[i]; |
| } |
| return m_leftImpl.coeff(left_index); |
| } else { |
| subs[m_axis] -= left_dims[m_axis]; |
| const Dimensions& right_dims = m_rightImpl.dimensions(); |
| Index right_index = subs[0]; |
| for (int i = 1; i < NumDims; ++i) { |
| right_index += (subs[i] % right_dims[i]) * m_rightStrides[i]; |
| } |
| return m_rightImpl.coeff(right_index); |
| } |
| } |
| |
| // TODO(phli): Add a real vectorization. |
| template<int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const |
| { |
| static const int packetSize = internal::unpacket_traits<PacketReturnType>::size; |
| EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| eigen_assert(index + packetSize - 1 < dimensions().TotalSize()); |
| |
| EIGEN_ALIGN_DEFAULT CoeffReturnType values[packetSize]; |
| for (int i = 0; i < packetSize; ++i) { |
| values[i] = coeff(index+i); |
| } |
| PacketReturnType rslt = internal::pload<PacketReturnType>(values); |
| return rslt; |
| } |
| |
| Scalar* data() const { return NULL; } |
| |
| protected: |
| const Axis m_axis; |
| Dimensions m_dimensions; |
| array<Index, NumDims> m_outputStrides; |
| array<Index, NumDims> m_leftStrides; |
| array<Index, NumDims> m_rightStrides; |
| TensorEvaluator<LeftArgType, Device> m_leftImpl; |
| TensorEvaluator<RightArgType, Device> m_rightImpl; |
| }; |
| |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H |