| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| static void test_simple_reductions() |
| { |
| Tensor<float, 4> tensor(2,3,5,7); |
| tensor.setRandom(); |
| array<ptrdiff_t, 2> reduction_axis; |
| reduction_axis[0] = 1; |
| reduction_axis[1] = 3; |
| |
| Tensor<float, 2> result = tensor.sum(reduction_axis); |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_EQUAL(result.dimension(1), 5); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| float sum = 0.0f; |
| for (int k = 0; k < 3; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| sum += tensor(i, k, j, l); |
| } |
| } |
| VERIFY_IS_APPROX(result(i, j), sum); |
| } |
| } |
| |
| reduction_axis[0] = 0; |
| reduction_axis[1] = 2; |
| result = tensor.maximum(reduction_axis); |
| VERIFY_IS_EQUAL(result.dimension(0), 3); |
| VERIFY_IS_EQUAL(result.dimension(1), 7); |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 7; ++j) { |
| float max_val = std::numeric_limits<float>::lowest(); |
| for (int k = 0; k < 2; ++k) { |
| for (int l = 0; l < 5; ++l) { |
| max_val = (std::max)(max_val, tensor(k, i, l, j)); |
| } |
| } |
| VERIFY_IS_APPROX(result(i, j), max_val); |
| } |
| } |
| |
| reduction_axis[0] = 0; |
| reduction_axis[1] = 1; |
| result = tensor.minimum(reduction_axis); |
| VERIFY_IS_EQUAL(result.dimension(0), 5); |
| VERIFY_IS_EQUAL(result.dimension(1), 7); |
| for (int i = 0; i < 5; ++i) { |
| for (int j = 0; j < 7; ++j) { |
| float min_val = (std::numeric_limits<float>::max)(); |
| for (int k = 0; k < 2; ++k) { |
| for (int l = 0; l < 3; ++l) { |
| min_val = (std::min)(min_val, tensor(k, l, i, j)); |
| } |
| } |
| VERIFY_IS_APPROX(result(i, j), min_val); |
| } |
| } |
| } |
| |
| |
| static void test_full_reductions() |
| { |
| Tensor<float, 2> tensor(2,3); |
| tensor.setRandom(); |
| array<ptrdiff_t, 2> reduction_axis; |
| reduction_axis[0] = 0; |
| reduction_axis[1] = 1; |
| |
| Tensor<float, 1> result = tensor.sum(reduction_axis); |
| VERIFY_IS_EQUAL(result.dimension(0), 1); |
| |
| float sum = 0.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| sum += tensor(i, j); |
| } |
| } |
| VERIFY_IS_APPROX(result(0), sum); |
| |
| result = tensor.square().sum(reduction_axis).sqrt(); |
| VERIFY_IS_EQUAL(result.dimension(0), 1); |
| |
| sum = 0.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| sum += tensor(i, j) * tensor(i, j); |
| } |
| } |
| VERIFY_IS_APPROX(result(0), sqrtf(sum)); |
| } |
| |
| |
| struct UserReducer { |
| UserReducer(float offset) : offset_(offset), sum_(0.0f) {} |
| void reduce(const float val) { |
| sum_ += val * val; |
| } |
| float finalize() const { |
| return 1.0f / (sum_ + offset_); |
| } |
| |
| private: |
| float offset_; |
| float sum_; |
| }; |
| |
| static void test_user_defined_reductions() |
| { |
| Tensor<float, 2> tensor(5,7); |
| tensor.setRandom(); |
| array<ptrdiff_t, 1> reduction_axis; |
| reduction_axis[0] = 1; |
| |
| UserReducer reducer(10.0f); |
| Tensor<float, 1> result = tensor.reduce(reduction_axis, reducer); |
| VERIFY_IS_EQUAL(result.dimension(0), 5); |
| for (int i = 0; i < 5; ++i) { |
| float expected = 10.0f; |
| for (int j = 0; j < 7; ++j) { |
| expected += tensor(i, j) * tensor(i, j); |
| } |
| expected = 1.0f / expected; |
| VERIFY_IS_APPROX(result(i), expected); |
| } |
| } |
| |
| |
| static void test_tensor_maps() |
| { |
| int inputs[2*3*5*7]; |
| TensorMap<Tensor<int, 4> > tensor_map(inputs, 2,3,5,7); |
| TensorMap<Tensor<const int, 4> > tensor_map_const(inputs, 2,3,5,7); |
| const TensorMap<Tensor<const int, 4> > tensor_map_const_const(inputs, 2,3,5,7); |
| |
| tensor_map.setRandom(); |
| array<ptrdiff_t, 2> reduction_axis; |
| reduction_axis[0] = 1; |
| reduction_axis[1] = 3; |
| |
| Tensor<int, 2> result = tensor_map.sum(reduction_axis); |
| Tensor<int, 2> result2 = tensor_map_const.sum(reduction_axis); |
| Tensor<int, 2> result3 = tensor_map_const_const.sum(reduction_axis); |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| int sum = 0; |
| for (int k = 0; k < 3; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| sum += tensor_map(i, k, j, l); |
| } |
| } |
| VERIFY_IS_EQUAL(result(i, j), sum); |
| VERIFY_IS_EQUAL(result2(i, j), sum); |
| VERIFY_IS_EQUAL(result3(i, j), sum); |
| } |
| } |
| } |
| |
| |
| void test_cxx11_tensor_reduction() |
| { |
| CALL_SUBTEST(test_simple_reductions()); |
| CALL_SUBTEST(test_full_reductions()); |
| CALL_SUBTEST(test_user_defined_reductions()); |
| CALL_SUBTEST(test_tensor_maps()); |
| } |