| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_META_H |
| #define EIGEN_META_H |
| |
| #include "../InternalHeaderCheck.h" |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| |
| #include <cfloat> |
| |
| #if defined(EIGEN_CUDA_ARCH) |
| #include <math_constants.h> |
| #endif |
| |
| #if defined(EIGEN_HIP_DEVICE_COMPILE) |
| #include "Eigen/src/Core/arch/HIP/hcc/math_constants.h" |
| #endif |
| |
| #endif |
| |
| #include "EmulateArray.h" |
| |
| // Define portable (u)int{32,64} types |
| #include <cstdint> |
| |
| namespace Eigen { |
| namespace numext { |
| typedef std::uint8_t uint8_t; |
| typedef std::int8_t int8_t; |
| typedef std::uint16_t uint16_t; |
| typedef std::int16_t int16_t; |
| typedef std::uint32_t uint32_t; |
| typedef std::int32_t int32_t; |
| typedef std::uint64_t uint64_t; |
| typedef std::int64_t int64_t; |
| |
| template <size_t Size> |
| struct get_integer_by_size { |
| typedef void signed_type; |
| typedef void unsigned_type; |
| }; |
| template <> |
| struct get_integer_by_size<1> { |
| typedef int8_t signed_type; |
| typedef uint8_t unsigned_type; |
| }; |
| template <> |
| struct get_integer_by_size<2> { |
| typedef int16_t signed_type; |
| typedef uint16_t unsigned_type; |
| }; |
| template <> |
| struct get_integer_by_size<4> { |
| typedef int32_t signed_type; |
| typedef uint32_t unsigned_type; |
| }; |
| template <> |
| struct get_integer_by_size<8> { |
| typedef int64_t signed_type; |
| typedef uint64_t unsigned_type; |
| }; |
| } |
| } |
| |
| namespace Eigen { |
| |
| typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; |
| |
| /** |
| * \brief The Index type as used for the API. |
| * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. |
| * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex. |
| */ |
| |
| typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index; |
| |
| namespace internal { |
| |
| /** \internal |
| * \file Meta.h |
| * This file contains generic metaprogramming classes which are not specifically related to Eigen. |
| * \note In case you wonder, yes we're aware that Boost already provides all these features, |
| * we however don't want to add a dependency to Boost. |
| */ |
| |
| struct true_type { enum { value = 1 }; }; |
| struct false_type { enum { value = 0 }; }; |
| |
| template<bool Condition> |
| struct bool_constant; |
| |
| template<> |
| struct bool_constant<true> : true_type {}; |
| |
| template<> |
| struct bool_constant<false> : false_type {}; |
| |
| // Third-party libraries rely on these. |
| using std::conditional; |
| using std::remove_reference; |
| using std::remove_pointer; |
| using std::remove_const; |
| |
| template<typename T> struct remove_all { typedef T type; }; |
| template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; }; |
| |
| template<typename T> |
| using remove_all_t = typename remove_all<T>::type; |
| |
| template<typename T> struct is_arithmetic { enum { value = false }; }; |
| template<> struct is_arithmetic<float> { enum { value = true }; }; |
| template<> struct is_arithmetic<double> { enum { value = true }; }; |
| // GPU devices treat `long double` as `double`. |
| #ifndef EIGEN_GPU_COMPILE_PHASE |
| template<> struct is_arithmetic<long double> { enum { value = true }; }; |
| #endif |
| template<> struct is_arithmetic<bool> { enum { value = true }; }; |
| template<> struct is_arithmetic<char> { enum { value = true }; }; |
| template<> struct is_arithmetic<signed char> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned char> { enum { value = true }; }; |
| template<> struct is_arithmetic<signed short> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned short>{ enum { value = true }; }; |
| template<> struct is_arithmetic<signed int> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned int> { enum { value = true }; }; |
| template<> struct is_arithmetic<signed long> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned long> { enum { value = true }; }; |
| |
| template<typename T, typename U> struct is_same { enum { value = 0 }; }; |
| template<typename T> struct is_same<T,T> { enum { value = 1 }; }; |
| |
| template< class T > |
| struct is_void : is_same<void, std::remove_const_t<T>> {}; |
| |
| /** \internal |
| * Implementation of std::void_t for SFINAE. |
| * |
| * Pre C++17: |
| * Custom implementation. |
| * |
| * Post C++17: Uses std::void_t |
| */ |
| #if EIGEN_COMP_CXXVER >= 17 |
| using std::void_t; |
| #else |
| template<typename...> |
| using void_t = void; |
| #endif |
| |
| template<> struct is_arithmetic<signed long long> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned long long> { enum { value = true }; }; |
| using std::is_integral; |
| |
| using std::make_unsigned; |
| |
| template <typename T> struct is_const { enum { value = 0 }; }; |
| template <typename T> struct is_const<T const> { enum { value = 1 }; }; |
| |
| template<typename T> struct add_const_on_value_type { typedef const T type; }; |
| template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; }; |
| template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; }; |
| template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; }; |
| template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; }; |
| |
| template<typename T> |
| using add_const_on_value_type_t = typename add_const_on_value_type<T>::type; |
| |
| using std::is_convertible; |
| |
| /** \internal |
| * A base class do disable default copy ctor and copy assignment operator. |
| */ |
| class noncopyable |
| { |
| EIGEN_DEVICE_FUNC noncopyable(const noncopyable&); |
| EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&); |
| protected: |
| EIGEN_DEVICE_FUNC noncopyable() {} |
| EIGEN_DEVICE_FUNC ~noncopyable() {} |
| }; |
| |
| /** \internal |
| * Provides access to the number of elements in the object of as a compile-time constant expression. |
| * It "returns" Eigen::Dynamic if the size cannot be resolved at compile-time (default). |
| * |
| * Similar to std::tuple_size, but more general. |
| * |
| * It currently supports: |
| * - any types T defining T::SizeAtCompileTime |
| * - plain C arrays as T[N] |
| * - std::array (c++11) |
| * - some internal types such as SingleRange and AllRange |
| * |
| * The second template parameter eases SFINAE-based specializations. |
| */ |
| template<typename T, typename EnableIf = void> struct array_size { |
| enum { value = Dynamic }; |
| }; |
| |
| template<typename T> struct array_size<T, std::enable_if_t<((T::SizeAtCompileTime&0)==0)>> { |
| enum { value = T::SizeAtCompileTime }; |
| }; |
| |
| template<typename T, int N> struct array_size<const T (&)[N]> { |
| enum { value = N }; |
| }; |
| template<typename T, int N> struct array_size<T (&)[N]> { |
| enum { value = N }; |
| }; |
| |
| template<typename T, std::size_t N> struct array_size<const std::array<T,N> > { |
| enum { value = N }; |
| }; |
| template<typename T, std::size_t N> struct array_size<std::array<T,N> > { |
| enum { value = N }; |
| }; |
| |
| |
| /** \internal |
| * Analogue of the std::ssize free function. |
| * It returns the signed size of the container or view \a x of type \c T |
| * |
| * It currently supports: |
| * - any types T defining a member T::size() const |
| * - plain C arrays as T[N] |
| * |
| * For C++20, this function just forwards to `std::ssize`, or any ADL discoverable `ssize` function. |
| */ |
| #if EIGEN_COMP_CXXVER < 20 || EIGEN_GNUC_STRICT_LESS_THAN(10,0,0) |
| template <typename T> |
| EIGEN_CONSTEXPR auto index_list_size(const T& x) { |
| using R = std::common_type_t<std::ptrdiff_t, std::make_signed_t<decltype(x.size())>>; |
| return static_cast<R>(x.size()); |
| } |
| |
| template<typename T, std::ptrdiff_t N> |
| EIGEN_CONSTEXPR std::ptrdiff_t index_list_size(const T (&)[N]) { return N; } |
| #else |
| template <typename T> |
| EIGEN_CONSTEXPR auto index_list_size(T&& x) { |
| using std::ssize; |
| return ssize(std::forward<T>(x)); |
| } |
| #endif // EIGEN_COMP_CXXVER |
| |
| /** \internal |
| * Convenient struct to get the result type of a nullary, unary, binary, or |
| * ternary functor. |
| * |
| * Pre C++17: |
| * This uses std::result_of. However, note the `type` member removes |
| * const and converts references/pointers to their corresponding value type. |
| * |
| * Post C++17: Uses std::invoke_result |
| */ |
| #if EIGEN_HAS_STD_INVOKE_RESULT |
| template<typename T> struct result_of; |
| |
| template<typename F, typename... ArgTypes> |
| struct result_of<F(ArgTypes...)> { |
| typedef typename std::invoke_result<F, ArgTypes...>::type type1; |
| typedef remove_all_t<type1> type; |
| }; |
| |
| template<typename F, typename... ArgTypes> |
| struct invoke_result { |
| typedef typename std::invoke_result<F, ArgTypes...>::type type1; |
| typedef remove_all_t<type1> type; |
| }; |
| #else |
| template<typename T> struct result_of { |
| typedef typename std::result_of<T>::type type1; |
| typedef remove_all_t<type1> type; |
| }; |
| |
| template<typename F, typename... ArgTypes> |
| struct invoke_result { |
| typedef typename result_of<F(ArgTypes...)>::type type1; |
| typedef remove_all_t<type1> type; |
| }; |
| #endif |
| |
| // Reduces a sequence of bools to true if all are true, false otherwise. |
| template<bool... values> |
| using reduce_all = std::is_same<std::integer_sequence<bool, values..., true>, |
| std::integer_sequence<bool, true, values...> >; |
| |
| // Reduces a sequence of bools to true if any are true, false if all false. |
| template<bool... values> |
| using reduce_any = std::integral_constant<bool, |
| !std::is_same<std::integer_sequence<bool, values..., false>, std::integer_sequence<bool, false, values...> >::value>; |
| |
| struct meta_yes { char a[1]; }; |
| struct meta_no { char a[2]; }; |
| |
| // Check whether T::ReturnType does exist |
| template <typename T> |
| struct has_ReturnType |
| { |
| template <typename C> static meta_yes testFunctor(C const *, typename C::ReturnType const * = 0); |
| template <typename C> static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor<T>(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template<typename T> const T* return_ptr(); |
| |
| template <typename T, typename IndexType=Index> |
| struct has_nullary_operator |
| { |
| template <typename C> static meta_yes testFunctor(C const *,std::enable_if_t<(sizeof(return_ptr<C>()->operator()())>0)> * = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template <typename T, typename IndexType=Index> |
| struct has_unary_operator |
| { |
| template <typename C> static meta_yes testFunctor(C const *,std::enable_if_t<(sizeof(return_ptr<C>()->operator()(IndexType(0)))>0)> * = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template <typename T, typename IndexType=Index> |
| struct has_binary_operator |
| { |
| template <typename C> static meta_yes testFunctor(C const *,std::enable_if_t<(sizeof(return_ptr<C>()->operator()(IndexType(0),IndexType(0)))>0)> * = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| /** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. |
| * Usage example: \code meta_sqrt<1023>::ret \endcode |
| */ |
| template<int Y, |
| int InfX = 0, |
| int SupX = ((Y==1) ? 1 : Y/2), |
| bool Done = ((SupX - InfX) <= 1 || ((SupX * SupX <= Y) && ((SupX + 1) * (SupX + 1) > Y)))> |
| class meta_sqrt |
| { |
| enum { |
| MidX = (InfX+SupX)/2, |
| TakeInf = MidX*MidX > Y ? 1 : 0, |
| NewInf = int(TakeInf) ? InfX : int(MidX), |
| NewSup = int(TakeInf) ? int(MidX) : SupX |
| }; |
| public: |
| enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret }; |
| }; |
| |
| template<int Y, int InfX, int SupX> |
| class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; |
| |
| |
| /** \internal Computes the least common multiple of two positive integer A and B |
| * at compile-time. |
| */ |
| template<int A, int B, int K=1, bool Done = ((A*K)%B)==0, bool Big=(A>=B)> |
| struct meta_least_common_multiple |
| { |
| enum { ret = meta_least_common_multiple<A,B,K+1>::ret }; |
| }; |
| template<int A, int B, int K, bool Done> |
| struct meta_least_common_multiple<A,B,K,Done,false> |
| { |
| enum { ret = meta_least_common_multiple<B,A,K>::ret }; |
| }; |
| template<int A, int B, int K> |
| struct meta_least_common_multiple<A,B,K,true,true> |
| { |
| enum { ret = A*K }; |
| }; |
| |
| |
| /** \internal determines whether the product of two numeric types is allowed and what the return type is */ |
| template<typename T, typename U> struct scalar_product_traits |
| { |
| enum { Defined = 0 }; |
| }; |
| |
| // FIXME quick workaround around current limitation of result_of |
| // template<typename Scalar, typename ArgType0, typename ArgType1> |
| // struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> { |
| // typedef typename scalar_product_traits<remove_all_t<ArgType0>, remove_all_t<ArgType1>>::ReturnType type; |
| // }; |
| |
| /** \internal Obtains a POD type suitable to use as storage for an object of a size |
| * of at most Len bytes, aligned as specified by \c Align. |
| */ |
| template<unsigned Len, unsigned Align> |
| struct aligned_storage { |
| struct type { |
| EIGEN_ALIGN_TO_BOUNDARY(Align) unsigned char data[Len]; |
| }; |
| }; |
| |
| } // end namespace internal |
| |
| template<typename T> struct NumTraits; |
| |
| namespace numext { |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| template<typename T> EIGEN_DEVICE_FUNC void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; } |
| #else |
| template<typename T> EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); } |
| #endif |
| |
| using std::numeric_limits; |
| |
| // Integer division with rounding up. |
| // T is assumed to be an integer type with a>=0, and b>0 |
| template<typename T> |
| EIGEN_DEVICE_FUNC |
| T div_ceil(const T &a, const T &b) |
| { |
| return (a+b-1) / b; |
| } |
| |
| // The aim of the following functions is to bypass -Wfloat-equal warnings |
| // when we really want a strict equality comparison on floating points. |
| template<typename X, typename Y> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool equal_strict(const X& x,const Y& y) { return x == y; } |
| |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool equal_strict(const float& x,const float& y) { return std::equal_to<float>()(x,y); } |
| |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool equal_strict(const double& x,const double& y) { return std::equal_to<double>()(x,y); } |
| #endif |
| |
| /** |
| * \internal Performs an exact comparison of x to zero, e.g. to decide whether a term can be ignored. |
| * Use this to to bypass -Wfloat-equal warnings when exact zero is what needs to be tested. |
| */ |
| template<typename X> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool is_exactly_zero(const X& x) { return equal_strict(x, typename NumTraits<X>::Literal{0}); } |
| |
| /** |
| * \internal Performs an exact comparison of x to one, e.g. to decide whether a factor needs to be multiplied. |
| * Use this to to bypass -Wfloat-equal warnings when exact one is what needs to be tested. |
| */ |
| template<typename X> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool is_exactly_one(const X& x) { return equal_strict(x, typename NumTraits<X>::Literal{1}); } |
| |
| template<typename X, typename Y> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool not_equal_strict(const X& x,const Y& y) { return x != y; } |
| |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool not_equal_strict(const float& x,const float& y) { return std::not_equal_to<float>()(x,y); } |
| |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to<double>()(x,y); } |
| #endif |
| |
| } // end namespace numext |
| |
| namespace internal { |
| |
| template<typename Scalar> |
| struct is_identically_zero_impl { |
| static inline bool run(const Scalar& s) { |
| return numext::is_exactly_zero(s); |
| } |
| }; |
| |
| template<typename Scalar> EIGEN_STRONG_INLINE |
| bool is_identically_zero(const Scalar& s) { return is_identically_zero_impl<Scalar>::run(s); } |
| |
| /// \internal Returns true if its argument is of integer or enum type. |
| /// FIXME this has the same purpose as `is_valid_index_type` in XprHelper.h |
| template<typename A> |
| constexpr bool is_int_or_enum_v = std::is_enum<A>::value || std::is_integral<A>::value; |
| |
| /// \internal Gets the minimum of two values which may be integers or enums |
| template<typename A, typename B> |
| inline constexpr int plain_enum_min(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| return ((int) a <= (int) b) ? (int) a : (int) b; |
| } |
| |
| /// \internal Gets the maximum of two values which may be integers or enums |
| template<typename A, typename B> |
| inline constexpr int plain_enum_max(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| return ((int) a >= (int) b) ? (int) a : (int) b; |
| } |
| |
| /** |
| * \internal |
| * `min_size_prefer_dynamic` gives the min between compile-time sizes. 0 has absolute priority, followed by 1, |
| * followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over |
| * finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3. |
| */ |
| template<typename A, typename B> |
| inline constexpr int min_size_prefer_dynamic(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| if ((int) a == 0 || (int) b == 0) return 0; |
| if ((int) a == 1 || (int) b == 1) return 1; |
| if ((int) a == Dynamic || (int) b == Dynamic) return Dynamic; |
| return plain_enum_min(a, b); |
| } |
| |
| /** |
| * \internal |
| * min_size_prefer_fixed is a variant of `min_size_prefer_dynamic` comparing MaxSizes. The difference is that finite values |
| * now have priority over Dynamic, so that min(3, Dynamic) gives 3. Indeed, whatever the actual value is |
| * (between 0 and 3), it is not more than 3. |
| */ |
| template<typename A, typename B> |
| inline constexpr int min_size_prefer_fixed(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| if ((int) a == 0 || (int) b == 0) return 0; |
| if ((int) a == 1 || (int) b == 1) return 1; |
| if ((int) a == Dynamic && (int) b == Dynamic) return Dynamic; |
| if ((int) a == Dynamic) return (int) b; |
| if ((int) b == Dynamic) return (int) a; |
| return plain_enum_min(a, b); |
| } |
| |
| /// \internal see `min_size_prefer_fixed`. No need for a separate variant for MaxSizes here. |
| template<typename A, typename B> |
| inline constexpr int max_size_prefer_dynamic(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| if ((int) a == Dynamic || (int) b == Dynamic) return Dynamic; |
| return plain_enum_max(a, b); |
| } |
| |
| /// \internal Calculate logical XOR at compile time |
| inline constexpr bool logical_xor(bool a, bool b) { |
| return a != b; |
| } |
| |
| /// \internal Calculate logical IMPLIES at compile time |
| inline constexpr bool check_implication(bool a, bool b) { |
| return !a || b; |
| } |
| |
| /// \internal Provide fallback for std::is_constant_evaluated for pre-C++20. |
| #if EIGEN_COMP_CXXVER >= 20 |
| using std::is_constant_evaluated; |
| #else |
| constexpr bool is_constant_evaluated() { return false; } |
| #endif |
| |
| template<typename... tt> |
| struct type_list { constexpr static int count = sizeof...(tt); }; |
| |
| template<typename t, typename... tt> |
| struct type_list<t, tt...> { constexpr static int count = sizeof...(tt) + 1; typedef t first_type; }; |
| |
| template<typename T, T... nn> |
| struct numeric_list { constexpr static std::size_t count = sizeof...(nn); }; |
| |
| template<typename T, T n, T... nn> |
| struct numeric_list<T, n, nn...> { static constexpr std::size_t count = sizeof...(nn) + 1; |
| static constexpr T first_value = n; }; |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /* numeric list constructors |
| * |
| * equivalencies: |
| * constructor result |
| * typename gen_numeric_list<int, 5>::type numeric_list<int, 0,1,2,3,4> |
| * typename gen_numeric_list_reversed<int, 5>::type numeric_list<int, 4,3,2,1,0> |
| * typename gen_numeric_list_swapped_pair<int, 5,1,2>::type numeric_list<int, 0,2,1,3,4> |
| * typename gen_numeric_list_repeated<int, 0, 5>::type numeric_list<int, 0,0,0,0,0> |
| */ |
| |
| template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list : gen_numeric_list<T, n-1, start, start + n-1, ii...> {}; |
| template<typename T, T start, T... ii> struct gen_numeric_list<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; }; |
| |
| template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list_reversed : gen_numeric_list_reversed<T, n-1, start, ii..., start + n-1> {}; |
| template<typename T, T start, T... ii> struct gen_numeric_list_reversed<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; }; |
| |
| template<typename T, std::size_t n, T a, T b, T start = 0, T... ii> struct gen_numeric_list_swapped_pair : gen_numeric_list_swapped_pair<T, n-1, a, b, start, (start + n-1) == a ? b : ((start + n-1) == b ? a : (start + n-1)), ii...> {}; |
| template<typename T, T a, T b, T start, T... ii> struct gen_numeric_list_swapped_pair<T, 0, a, b, start, ii...> { typedef numeric_list<T, ii...> type; }; |
| |
| template<typename T, std::size_t n, T V, T... nn> struct gen_numeric_list_repeated : gen_numeric_list_repeated<T, n-1, V, V, nn...> {}; |
| template<typename T, T V, T... nn> struct gen_numeric_list_repeated<T, 0, V, nn...> { typedef numeric_list<T, nn...> type; }; |
| |
| /* list manipulation: concatenate */ |
| |
| template<class a, class b> struct concat; |
| |
| template<typename... as, typename... bs> struct concat<type_list<as...>, type_list<bs...>> { typedef type_list<as..., bs...> type; }; |
| template<typename T, T... as, T... bs> struct concat<numeric_list<T, as...>, numeric_list<T, bs...> > { typedef numeric_list<T, as..., bs...> type; }; |
| |
| template<typename... p> struct mconcat; |
| template<typename a> struct mconcat<a> { typedef a type; }; |
| template<typename a, typename b> struct mconcat<a, b> : concat<a, b> {}; |
| template<typename a, typename b, typename... cs> struct mconcat<a, b, cs...> : concat<a, typename mconcat<b, cs...>::type> {}; |
| |
| /* list manipulation: extract slices */ |
| |
| template<int n, typename x> struct take; |
| template<int n, typename a, typename... as> struct take<n, type_list<a, as...>> : concat<type_list<a>, typename take<n-1, type_list<as...>>::type> {}; |
| template<int n> struct take<n, type_list<>> { typedef type_list<> type; }; |
| template<typename a, typename... as> struct take<0, type_list<a, as...>> { typedef type_list<> type; }; |
| template<> struct take<0, type_list<>> { typedef type_list<> type; }; |
| |
| template<typename T, int n, T a, T... as> struct take<n, numeric_list<T, a, as...>> : concat<numeric_list<T, a>, typename take<n-1, numeric_list<T, as...>>::type> {}; |
| // XXX The following breaks in gcc-11, and is invalid anyways. |
| // template<typename T, int n> struct take<n, numeric_list<T>> { typedef numeric_list<T> type; }; |
| template<typename T, T a, T... as> struct take<0, numeric_list<T, a, as...>> { typedef numeric_list<T> type; }; |
| template<typename T> struct take<0, numeric_list<T>> { typedef numeric_list<T> type; }; |
| |
| template<typename T, int n, T... ii> struct h_skip_helper_numeric; |
| template<typename T, int n, T i, T... ii> struct h_skip_helper_numeric<T, n, i, ii...> : h_skip_helper_numeric<T, n-1, ii...> {}; |
| template<typename T, T i, T... ii> struct h_skip_helper_numeric<T, 0, i, ii...> { typedef numeric_list<T, i, ii...> type; }; |
| template<typename T, int n> struct h_skip_helper_numeric<T, n> { typedef numeric_list<T> type; }; |
| template<typename T> struct h_skip_helper_numeric<T, 0> { typedef numeric_list<T> type; }; |
| |
| template<int n, typename... tt> struct h_skip_helper_type; |
| template<int n, typename t, typename... tt> struct h_skip_helper_type<n, t, tt...> : h_skip_helper_type<n-1, tt...> {}; |
| template<typename t, typename... tt> struct h_skip_helper_type<0, t, tt...> { typedef type_list<t, tt...> type; }; |
| template<int n> struct h_skip_helper_type<n> { typedef type_list<> type; }; |
| template<> struct h_skip_helper_type<0> { typedef type_list<> type; }; |
| #endif //not EIGEN_PARSED_BY_DOXYGEN |
| |
| template<int n> |
| struct h_skip { |
| template<typename T, T... ii> |
| constexpr static EIGEN_STRONG_INLINE typename h_skip_helper_numeric<T, n, ii...>::type helper(numeric_list<T, ii...>) { return typename h_skip_helper_numeric<T, n, ii...>::type(); } |
| template<typename... tt> |
| constexpr static EIGEN_STRONG_INLINE typename h_skip_helper_type<n, tt...>::type helper(type_list<tt...>) { return typename h_skip_helper_type<n, tt...>::type(); } |
| }; |
| |
| template<int n, typename a> struct skip { typedef decltype(h_skip<n>::helper(a())) type; }; |
| |
| template<int start, int count, typename a> struct slice : take<count, typename skip<start, a>::type> {}; |
| |
| /* list manipulation: retrieve single element from list */ |
| |
| template<int n, typename x> struct get; |
| |
| template<int n, typename a, typename... as> struct get<n, type_list<a, as...>> : get<n-1, type_list<as...>> {}; |
| template<typename a, typename... as> struct get<0, type_list<a, as...>> { typedef a type; }; |
| |
| template<typename T, int n, T a, T... as> struct get<n, numeric_list<T, a, as...>> : get<n-1, numeric_list<T, as...>> {}; |
| template<typename T, T a, T... as> struct get<0, numeric_list<T, a, as...>> { constexpr static T value = a; }; |
| |
| template<std::size_t n, typename T, T a, T... as> constexpr T array_get(const numeric_list<T, a, as...>&) { |
| return get<(int)n, numeric_list<T, a, as...>>::value; |
| } |
| |
| /* always get type, regardless of dummy; good for parameter pack expansion */ |
| |
| template<typename T, T dummy, typename t> struct id_numeric { typedef t type; }; |
| template<typename dummy, typename t> struct id_type { typedef t type; }; |
| |
| /* equality checking, flagged version */ |
| |
| template<typename a, typename b> struct is_same_gf : is_same<a, b> { constexpr static int global_flags = 0; }; |
| |
| /* apply_op to list */ |
| |
| template< |
| bool from_left, // false |
| template<typename, typename> class op, |
| typename additional_param, |
| typename... values |
| > |
| struct h_apply_op_helper { typedef type_list<typename op<values, additional_param>::type...> type; }; |
| template< |
| template<typename, typename> class op, |
| typename additional_param, |
| typename... values |
| > |
| struct h_apply_op_helper<true, op, additional_param, values...> { typedef type_list<typename op<additional_param, values>::type...> type; }; |
| |
| template< |
| bool from_left, |
| template<typename, typename> class op, |
| typename additional_param |
| > |
| struct h_apply_op |
| { |
| template<typename... values> |
| constexpr static typename h_apply_op_helper<from_left, op, additional_param, values...>::type helper(type_list<values...>) |
| { return typename h_apply_op_helper<from_left, op, additional_param, values...>::type(); } |
| }; |
| |
| template< |
| template<typename, typename> class op, |
| typename additional_param, |
| typename a |
| > |
| struct apply_op_from_left { typedef decltype(h_apply_op<true, op, additional_param>::helper(a())) type; }; |
| |
| template< |
| template<typename, typename> class op, |
| typename additional_param, |
| typename a |
| > |
| struct apply_op_from_right { typedef decltype(h_apply_op<false, op, additional_param>::helper(a())) type; }; |
| |
| /* see if an element is in a list */ |
| |
| template< |
| template<typename, typename> class test, |
| typename check_against, |
| typename h_list, |
| bool last_check_positive = false |
| > |
| struct contained_in_list; |
| |
| template< |
| template<typename, typename> class test, |
| typename check_against, |
| typename h_list |
| > |
| struct contained_in_list<test, check_against, h_list, true> |
| { |
| constexpr static bool value = true; |
| }; |
| |
| template< |
| template<typename, typename> class test, |
| typename check_against, |
| typename a, |
| typename... as |
| > |
| struct contained_in_list<test, check_against, type_list<a, as...>, false> : contained_in_list<test, check_against, type_list<as...>, test<check_against, a>::value> {}; |
| |
| template< |
| template<typename, typename> class test, |
| typename check_against, |
| typename... empty |
| > |
| struct contained_in_list<test, check_against, type_list<empty...>, false> { constexpr static bool value = false; }; |
| |
| /* see if an element is in a list and check for global flags */ |
| |
| template< |
| template<typename, typename> class test, |
| typename check_against, |
| typename h_list, |
| int default_flags = 0, |
| bool last_check_positive = false, |
| int last_check_flags = default_flags |
| > |
| struct contained_in_list_gf; |
| |
| template< |
| template<typename, typename> class test, |
| typename check_against, |
| typename h_list, |
| int default_flags, |
| int last_check_flags |
| > |
| struct contained_in_list_gf<test, check_against, h_list, default_flags, true, last_check_flags> |
| { |
| constexpr static bool value = true; |
| constexpr static int global_flags = last_check_flags; |
| }; |
| |
| template< |
| template<typename, typename> class test, |
| typename check_against, |
| typename a, |
| typename... as, |
| int default_flags, |
| int last_check_flags |
| > |
| struct contained_in_list_gf<test, check_against, type_list<a, as...>, default_flags, false, last_check_flags> : contained_in_list_gf<test, check_against, type_list<as...>, default_flags, test<check_against, a>::value, test<check_against, a>::global_flags> {}; |
| |
| template< |
| template<typename, typename> class test, |
| typename check_against, |
| typename... empty, |
| int default_flags, |
| int last_check_flags |
| > |
| struct contained_in_list_gf<test, check_against, type_list<empty...>, default_flags, false, last_check_flags> { constexpr static bool value = false; constexpr static int global_flags = default_flags; }; |
| |
| /* generic reductions */ |
| |
| template< |
| typename Reducer, |
| typename... Ts |
| > struct reduce; |
| |
| template< |
| typename Reducer |
| > struct reduce<Reducer> |
| { |
| EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE int run() { return Reducer::Identity; } |
| }; |
| |
| template< |
| typename Reducer, |
| typename A |
| > struct reduce<Reducer, A> |
| { |
| EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE A run(A a) { return a; } |
| }; |
| |
| template< |
| typename Reducer, |
| typename A, |
| typename... Ts |
| > struct reduce<Reducer, A, Ts...> |
| { |
| EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, Ts... ts) -> decltype(Reducer::run(a, reduce<Reducer, Ts...>::run(ts...))) { |
| return Reducer::run(a, reduce<Reducer, Ts...>::run(ts...)); |
| } |
| }; |
| |
| /* generic binary operations */ |
| |
| struct sum_op { |
| template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a + b) { return a + b; } |
| static constexpr int Identity = 0; |
| }; |
| struct product_op { |
| template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a * b) { return a * b; } |
| static constexpr int Identity = 1; |
| }; |
| |
| struct logical_and_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a && b) { return a && b; } }; |
| struct logical_or_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a || b) { return a || b; } }; |
| |
| struct equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a == b) { return a == b; } }; |
| struct not_equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a != b) { return a != b; } }; |
| struct lesser_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a < b) { return a < b; } }; |
| struct lesser_equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a <= b) { return a <= b; } }; |
| struct greater_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a > b) { return a > b; } }; |
| struct greater_equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a >= b) { return a >= b; } }; |
| |
| /* generic unary operations */ |
| |
| struct not_op { template<typename A> constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(!a) { return !a; } }; |
| struct negation_op { template<typename A> constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(-a) { return -a; } }; |
| struct greater_equal_zero_op { template<typename A> constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(a >= 0) { return a >= 0; } }; |
| |
| |
| /* reductions for lists */ |
| |
| // using auto -> return value spec makes ICC 13.0 and 13.1 crash here, so we have to hack it |
| // together in front... (13.0 doesn't work with array_prod/array_reduce/... anyway, but 13.1 |
| // does... |
| template<typename... Ts> |
| EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE decltype(reduce<product_op, Ts...>::run((*((Ts*)0))...)) arg_prod(Ts... ts) |
| { |
| return reduce<product_op, Ts...>::run(ts...); |
| } |
| |
| template<typename... Ts> |
| constexpr EIGEN_STRONG_INLINE decltype(reduce<sum_op, Ts...>::run((*((Ts*)0))...)) arg_sum(Ts... ts) |
| { |
| return reduce<sum_op, Ts...>::run(ts...); |
| } |
| |
| /* reverse arrays */ |
| |
| template<typename Array, int... n> |
| constexpr EIGEN_STRONG_INLINE Array h_array_reverse(Array arr, numeric_list<int, n...>) |
| { |
| return {{array_get<sizeof...(n) - n - 1>(arr)...}}; |
| } |
| |
| template<typename T, std::size_t N> |
| constexpr EIGEN_STRONG_INLINE array<T, N> array_reverse(array<T, N> arr) |
| { |
| return h_array_reverse(arr, typename gen_numeric_list<int, N>::type()); |
| } |
| |
| |
| /* generic array reductions */ |
| |
| // can't reuse standard reduce() interface above because Intel's Compiler |
| // *really* doesn't like it, so we just reimplement the stuff |
| // (start from N - 1 and work down to 0 because specialization for |
| // n == N - 1 also doesn't work in Intel's compiler, so it goes into |
| // an infinite loop) |
| template<typename Reducer, typename T, std::size_t N, std::size_t n = N - 1> |
| struct h_array_reduce { |
| EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(array<T, N> arr, T identity) -> decltype(Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr))) |
| { |
| return Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr)); |
| } |
| }; |
| |
| template<typename Reducer, typename T, std::size_t N> |
| struct h_array_reduce<Reducer, T, N, 0> |
| { |
| EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE T run(const array<T, N>& arr, T) |
| { |
| return array_get<0>(arr); |
| } |
| }; |
| |
| template<typename Reducer, typename T> |
| struct h_array_reduce<Reducer, T, 0> |
| { |
| EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE T run(const array<T, 0>&, T identity) |
| { |
| return identity; |
| } |
| }; |
| |
| template<typename Reducer, typename T, std::size_t N> |
| EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_reduce(const array<T, N>& arr, T identity) -> decltype(h_array_reduce<Reducer, T, N>::run(arr, identity)) |
| { |
| return h_array_reduce<Reducer, T, N>::run(arr, identity); |
| } |
| |
| /* standard array reductions */ |
| |
| template<typename T, std::size_t N> |
| EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_sum(const array<T, N>& arr) -> decltype(array_reduce<sum_op, T, N>(arr, static_cast<T>(0))) |
| { |
| return array_reduce<sum_op, T, N>(arr, static_cast<T>(0)); |
| } |
| |
| template<typename T, std::size_t N> |
| EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_prod(const array<T, N>& arr) -> decltype(array_reduce<product_op, T, N>(arr, static_cast<T>(1))) |
| { |
| return array_reduce<product_op, T, N>(arr, static_cast<T>(1)); |
| } |
| |
| template<typename t> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const std::vector<t>& a) { |
| eigen_assert(a.size() > 0); |
| t prod = 1; |
| for (size_t i = 0; i < a.size(); ++i) { prod *= a[i]; } |
| return prod; |
| } |
| |
| /* zip an array */ |
| |
| template<typename Op, typename A, typename B, std::size_t N, int... n> |
| constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A(), B())),N> h_array_zip(array<A, N> a, array<B, N> b, numeric_list<int, n...>) |
| { |
| return array<decltype(Op::run(A(), B())),N>{{ Op::run(array_get<n>(a), array_get<n>(b))... }}; |
| } |
| |
| template<typename Op, typename A, typename B, std::size_t N> |
| constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A(), B())),N> array_zip(array<A, N> a, array<B, N> b) |
| { |
| return h_array_zip<Op>(a, b, typename gen_numeric_list<int, N>::type()); |
| } |
| |
| /* zip an array and reduce the result */ |
| |
| template<typename Reducer, typename Op, typename A, typename B, std::size_t N, int... n> |
| constexpr EIGEN_STRONG_INLINE auto h_array_zip_and_reduce(array<A, N> a, array<B, N> b, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...)) |
| { |
| return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...); |
| } |
| |
| template<typename Reducer, typename Op, typename A, typename B, std::size_t N> |
| constexpr EIGEN_STRONG_INLINE auto array_zip_and_reduce(array<A, N> a, array<B, N> b) -> decltype(h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type())) |
| { |
| return h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type()); |
| } |
| |
| /* apply stuff to an array */ |
| |
| template<typename Op, typename A, std::size_t N, int... n> |
| constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A())),N> h_array_apply(array<A, N> a, numeric_list<int, n...>) |
| { |
| return array<decltype(Op::run(A())),N>{{ Op::run(array_get<n>(a))... }}; |
| } |
| |
| template<typename Op, typename A, std::size_t N> |
| constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A())),N> array_apply(array<A, N> a) |
| { |
| return h_array_apply<Op>(a, typename gen_numeric_list<int, N>::type()); |
| } |
| |
| /* apply stuff to an array and reduce */ |
| |
| template<typename Reducer, typename Op, typename A, std::size_t N, int... n> |
| constexpr EIGEN_STRONG_INLINE auto h_array_apply_and_reduce(array<A, N> arr, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...)) |
| { |
| return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...); |
| } |
| |
| template<typename Reducer, typename Op, typename A, std::size_t N> |
| constexpr EIGEN_STRONG_INLINE auto array_apply_and_reduce(array<A, N> a) -> decltype(h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type())) |
| { |
| return h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type()); |
| } |
| |
| /* repeat a value n times (and make an array out of it |
| * usage: |
| * array<int, 16> = repeat<16>(42); |
| */ |
| |
| template<int n> |
| struct h_repeat |
| { |
| template<typename t, int... ii> |
| constexpr static EIGEN_STRONG_INLINE array<t, n> run(t v, numeric_list<int, ii...>) |
| { |
| return {{ typename id_numeric<int, ii, t>::type(v)... }}; |
| } |
| }; |
| |
| template<int n, typename t> |
| constexpr array<t, n> repeat(t v) { return h_repeat<n>::run(v, typename gen_numeric_list<int, n>::type()); } |
| |
| /* instantiate a class by a C-style array */ |
| template<class InstType, typename ArrType, std::size_t N, bool Reverse, typename... Ps> |
| struct h_instantiate_by_c_array; |
| |
| template<class InstType, typename ArrType, std::size_t N, typename... Ps> |
| struct h_instantiate_by_c_array<InstType, ArrType, N, false, Ps...> |
| { |
| static InstType run(ArrType* arr, Ps... args) |
| { |
| return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, Ps..., ArrType>::run(arr + 1, args..., arr[0]); |
| } |
| }; |
| |
| template<class InstType, typename ArrType, std::size_t N, typename... Ps> |
| struct h_instantiate_by_c_array<InstType, ArrType, N, true, Ps...> |
| { |
| static InstType run(ArrType* arr, Ps... args) |
| { |
| return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, ArrType, Ps...>::run(arr + 1, arr[0], args...); |
| } |
| }; |
| |
| template<class InstType, typename ArrType, typename... Ps> |
| struct h_instantiate_by_c_array<InstType, ArrType, 0, false, Ps...> |
| { |
| static InstType run(ArrType* arr, Ps... args) |
| { |
| (void)arr; |
| return InstType(args...); |
| } |
| }; |
| |
| template<class InstType, typename ArrType, typename... Ps> |
| struct h_instantiate_by_c_array<InstType, ArrType, 0, true, Ps...> |
| { |
| static InstType run(ArrType* arr, Ps... args) |
| { |
| (void)arr; |
| return InstType(args...); |
| } |
| }; |
| |
| template<class InstType, typename ArrType, std::size_t N, bool Reverse = false> |
| InstType instantiate_by_c_array(ArrType* arr) |
| { |
| return h_instantiate_by_c_array<InstType, ArrType, N, Reverse>::run(arr); |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_META_H |