| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "sparse.h" |
| #include <Eigen/SparseExtra> |
| |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| #include <Eigen/CholmodSupport> |
| #endif |
| |
| #ifdef EIGEN_TAUCS_SUPPORT |
| #include <Eigen/TaucsSupport> |
| #endif |
| |
| template<typename Scalar> void sparse_llt(int rows, int cols) |
| { |
| double density = std::max(8./(rows*cols), 0.01); |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| |
| // TODO fix the issue with complex (see SparseLLT::solveInPlace) |
| SparseMatrix<Scalar> m2(rows, cols); |
| DenseMatrix refMat2(rows, cols); |
| |
| DenseVector b = DenseVector::Random(cols); |
| DenseVector refX(cols), x(cols); |
| |
| initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0); |
| for(int i=0; i<rows; ++i) |
| m2.coeffRef(i,i) = refMat2(i,i) = ei_abs(ei_real(refMat2(i,i))); |
| |
| refX = refMat2.template selfadjointView<Lower>().llt().solve(b); |
| if (!NumTraits<Scalar>::IsComplex) |
| { |
| x = b; |
| SparseLLT<SparseMatrix<Scalar> > (m2).solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default"); |
| } |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| x = b; |
| SparseLLT<SparseMatrix<Scalar> ,Cholmod>(m2).solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod"); |
| #endif |
| |
| #ifdef EIGEN_TAUCS_SUPPORT |
| // TODO fix TAUCS with complexes |
| if (!NumTraits<Scalar>::IsComplex) |
| { |
| x = b; |
| // SparseLLT<SparseMatrix<Scalar> ,Taucs>(m2,IncompleteFactorization).solveInPlace(x); |
| // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)"); |
| |
| x = b; |
| SparseLLT<SparseMatrix<Scalar> ,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)"); |
| x = b; |
| SparseLLT<SparseMatrix<Scalar> ,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)"); |
| } |
| #endif |
| } |
| |
| void test_sparse_llt() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(sparse_llt<double>(8, 8) ); |
| int s = ei_random<int>(1,300); |
| CALL_SUBTEST_2(sparse_llt<std::complex<double> >(s,s) ); |
| CALL_SUBTEST_1(sparse_llt<double>(s,s) ); |
| } |
| } |