| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_PERMUTATIONMATRIX_H | 
 | #define EIGEN_PERMUTATIONMATRIX_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | enum PermPermProduct_t { PermPermProduct }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | /** \class PermutationBase | 
 |  * \ingroup Core_Module | 
 |  * | 
 |  * \brief Base class for permutations | 
 |  * | 
 |  * \tparam Derived the derived class | 
 |  * | 
 |  * This class is the base class for all expressions representing a permutation matrix, | 
 |  * internally stored as a vector of integers. | 
 |  * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix | 
 |  * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: | 
 |  *  \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] | 
 |  * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: | 
 |  *  \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] | 
 |  * | 
 |  * Permutation matrices are square and invertible. | 
 |  * | 
 |  * Notice that in addition to the member functions and operators listed here, there also are non-member | 
 |  * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase) | 
 |  * on either side. | 
 |  * | 
 |  * \sa class PermutationMatrix, class PermutationWrapper | 
 |  */ | 
 | template <typename Derived> | 
 | class PermutationBase : public EigenBase<Derived> { | 
 |   typedef internal::traits<Derived> Traits; | 
 |   typedef EigenBase<Derived> Base; | 
 |  | 
 |  public: | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   typedef typename Traits::IndicesType IndicesType; | 
 |   enum { | 
 |     Flags = Traits::Flags, | 
 |     RowsAtCompileTime = Traits::RowsAtCompileTime, | 
 |     ColsAtCompileTime = Traits::ColsAtCompileTime, | 
 |     MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = Traits::MaxColsAtCompileTime | 
 |   }; | 
 |   typedef typename Traits::StorageIndex StorageIndex; | 
 |   typedef Matrix<StorageIndex, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> | 
 |       DenseMatrixType; | 
 |   typedef PermutationMatrix<IndicesType::SizeAtCompileTime, IndicesType::MaxSizeAtCompileTime, StorageIndex> | 
 |       PlainPermutationType; | 
 |   typedef PlainPermutationType PlainObject; | 
 |   using Base::derived; | 
 |   typedef Inverse<Derived> InverseReturnType; | 
 |   typedef void Scalar; | 
 | #endif | 
 |  | 
 |   /** Copies the other permutation into *this */ | 
 |   template <typename OtherDerived> | 
 |   Derived& operator=(const PermutationBase<OtherDerived>& other) { | 
 |     indices() = other.indices(); | 
 |     return derived(); | 
 |   } | 
 |  | 
 |   /** Assignment from the Transpositions \a tr */ | 
 |   template <typename OtherDerived> | 
 |   Derived& operator=(const TranspositionsBase<OtherDerived>& tr) { | 
 |     setIdentity(tr.size()); | 
 |     for (Index k = size() - 1; k >= 0; --k) applyTranspositionOnTheRight(k, tr.coeff(k)); | 
 |     return derived(); | 
 |   } | 
 |  | 
 |   /** \returns the number of rows */ | 
 |   inline EIGEN_DEVICE_FUNC Index rows() const { return Index(indices().size()); } | 
 |  | 
 |   /** \returns the number of columns */ | 
 |   inline EIGEN_DEVICE_FUNC Index cols() const { return Index(indices().size()); } | 
 |  | 
 |   /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ | 
 |   inline EIGEN_DEVICE_FUNC Index size() const { return Index(indices().size()); } | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   template <typename DenseDerived> | 
 |   void evalTo(MatrixBase<DenseDerived>& other) const { | 
 |     other.setZero(); | 
 |     for (Index i = 0; i < rows(); ++i) other.coeffRef(indices().coeff(i), i) = typename DenseDerived::Scalar(1); | 
 |   } | 
 | #endif | 
 |  | 
 |   /** \returns a Matrix object initialized from this permutation matrix. Notice that it | 
 |    * is inefficient to return this Matrix object by value. For efficiency, favor using | 
 |    * the Matrix constructor taking EigenBase objects. | 
 |    */ | 
 |   DenseMatrixType toDenseMatrix() const { return derived(); } | 
 |  | 
 |   /** const version of indices(). */ | 
 |   const IndicesType& indices() const { return derived().indices(); } | 
 |   /** \returns a reference to the stored array representing the permutation. */ | 
 |   IndicesType& indices() { return derived().indices(); } | 
 |  | 
 |   /** Resizes to given size. | 
 |    */ | 
 |   inline void resize(Index newSize) { indices().resize(newSize); } | 
 |  | 
 |   /** Sets *this to be the identity permutation matrix */ | 
 |   void setIdentity() { | 
 |     StorageIndex n = StorageIndex(size()); | 
 |     for (StorageIndex i = 0; i < n; ++i) indices().coeffRef(i) = i; | 
 |   } | 
 |  | 
 |   /** Sets *this to be the identity permutation matrix of given size. | 
 |    */ | 
 |   void setIdentity(Index newSize) { | 
 |     resize(newSize); | 
 |     setIdentity(); | 
 |   } | 
 |  | 
 |   /** Multiplies *this by the transposition \f$(ij)\f$ on the left. | 
 |    * | 
 |    * \returns a reference to *this. | 
 |    * | 
 |    * \warning This is much slower than applyTranspositionOnTheRight(Index,Index): | 
 |    * this has linear complexity and requires a lot of branching. | 
 |    * | 
 |    * \sa applyTranspositionOnTheRight(Index,Index) | 
 |    */ | 
 |   Derived& applyTranspositionOnTheLeft(Index i, Index j) { | 
 |     eigen_assert(i >= 0 && j >= 0 && i < size() && j < size()); | 
 |     for (Index k = 0; k < size(); ++k) { | 
 |       if (indices().coeff(k) == i) | 
 |         indices().coeffRef(k) = StorageIndex(j); | 
 |       else if (indices().coeff(k) == j) | 
 |         indices().coeffRef(k) = StorageIndex(i); | 
 |     } | 
 |     return derived(); | 
 |   } | 
 |  | 
 |   /** Multiplies *this by the transposition \f$(ij)\f$ on the right. | 
 |    * | 
 |    * \returns a reference to *this. | 
 |    * | 
 |    * This is a fast operation, it only consists in swapping two indices. | 
 |    * | 
 |    * \sa applyTranspositionOnTheLeft(Index,Index) | 
 |    */ | 
 |   Derived& applyTranspositionOnTheRight(Index i, Index j) { | 
 |     eigen_assert(i >= 0 && j >= 0 && i < size() && j < size()); | 
 |     std::swap(indices().coeffRef(i), indices().coeffRef(j)); | 
 |     return derived(); | 
 |   } | 
 |  | 
 |   /** \returns the inverse permutation matrix. | 
 |    * | 
 |    * \note \blank \note_try_to_help_rvo | 
 |    */ | 
 |   inline InverseReturnType inverse() const { return InverseReturnType(derived()); } | 
 |   /** \returns the tranpose permutation matrix. | 
 |    * | 
 |    * \note \blank \note_try_to_help_rvo | 
 |    */ | 
 |   inline InverseReturnType transpose() const { return InverseReturnType(derived()); } | 
 |  | 
 |   /**** multiplication helpers to hopefully get RVO ****/ | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |  protected: | 
 |   template <typename OtherDerived> | 
 |   void assignTranspose(const PermutationBase<OtherDerived>& other) { | 
 |     for (Index i = 0; i < rows(); ++i) indices().coeffRef(other.indices().coeff(i)) = i; | 
 |   } | 
 |   template <typename Lhs, typename Rhs> | 
 |   void assignProduct(const Lhs& lhs, const Rhs& rhs) { | 
 |     eigen_assert(lhs.cols() == rhs.rows()); | 
 |     for (Index i = 0; i < rows(); ++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i)); | 
 |   } | 
 | #endif | 
 |  | 
 |  public: | 
 |   /** \returns the product permutation matrix. | 
 |    * | 
 |    * \note \blank \note_try_to_help_rvo | 
 |    */ | 
 |   template <typename Other> | 
 |   inline PlainPermutationType operator*(const PermutationBase<Other>& other) const { | 
 |     return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); | 
 |   } | 
 |  | 
 |   /** \returns the product of a permutation with another inverse permutation. | 
 |    * | 
 |    * \note \blank \note_try_to_help_rvo | 
 |    */ | 
 |   template <typename Other> | 
 |   inline PlainPermutationType operator*(const InverseImpl<Other, PermutationStorage>& other) const { | 
 |     return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); | 
 |   } | 
 |  | 
 |   /** \returns the product of an inverse permutation with another permutation. | 
 |    * | 
 |    * \note \blank \note_try_to_help_rvo | 
 |    */ | 
 |   template <typename Other> | 
 |   friend inline PlainPermutationType operator*(const InverseImpl<Other, PermutationStorage>& other, | 
 |                                                const PermutationBase& perm) { | 
 |     return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); | 
 |   } | 
 |  | 
 |   /** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the | 
 |    * permutation. | 
 |    * | 
 |    * This function is O(\c n) procedure allocating a buffer of \c n booleans. | 
 |    */ | 
 |   Index determinant() const { | 
 |     Index res = 1; | 
 |     Index n = size(); | 
 |     Matrix<bool, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime> mask(n); | 
 |     mask.fill(false); | 
 |     Index r = 0; | 
 |     while (r < n) { | 
 |       // search for the next seed | 
 |       while (r < n && mask[r]) r++; | 
 |       if (r >= n) break; | 
 |       // we got one, let's follow it until we are back to the seed | 
 |       Index k0 = r++; | 
 |       mask.coeffRef(k0) = true; | 
 |       for (Index k = indices().coeff(k0); k != k0; k = indices().coeff(k)) { | 
 |         mask.coeffRef(k) = true; | 
 |         res = -res; | 
 |       } | 
 |     } | 
 |     return res; | 
 |   } | 
 |  | 
 |  protected: | 
 | }; | 
 |  | 
 | namespace internal { | 
 | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_> | 
 | struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> > | 
 |     : traits< | 
 |           Matrix<StorageIndex_, SizeAtCompileTime, SizeAtCompileTime, 0, MaxSizeAtCompileTime, MaxSizeAtCompileTime> > { | 
 |   typedef PermutationStorage StorageKind; | 
 |   typedef Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; | 
 |   typedef StorageIndex_ StorageIndex; | 
 |   typedef void Scalar; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | /** \class PermutationMatrix | 
 |  * \ingroup Core_Module | 
 |  * | 
 |  * \brief Permutation matrix | 
 |  * | 
 |  * \tparam SizeAtCompileTime the number of rows/cols, or Dynamic | 
 |  * \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to | 
 |  * SizeAtCompileTime. Most of the time, you should not have to specify it. \tparam StorageIndex_ the integer type of the | 
 |  * indices | 
 |  * | 
 |  * This class represents a permutation matrix, internally stored as a vector of integers. | 
 |  * | 
 |  * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix | 
 |  */ | 
 | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_> | 
 | class PermutationMatrix | 
 |     : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> > { | 
 |   typedef PermutationBase<PermutationMatrix> Base; | 
 |   typedef internal::traits<PermutationMatrix> Traits; | 
 |  | 
 |  public: | 
 |   typedef const PermutationMatrix& Nested; | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   typedef typename Traits::IndicesType IndicesType; | 
 |   typedef typename Traits::StorageIndex StorageIndex; | 
 | #endif | 
 |  | 
 |   inline PermutationMatrix() {} | 
 |  | 
 |   /** Constructs an uninitialized permutation matrix of given size. | 
 |    */ | 
 |   explicit inline PermutationMatrix(Index size) : m_indices(size) { | 
 |     eigen_internal_assert(size <= NumTraits<StorageIndex>::highest()); | 
 |   } | 
 |  | 
 |   /** Copy constructor. */ | 
 |   template <typename OtherDerived> | 
 |   inline PermutationMatrix(const PermutationBase<OtherDerived>& other) : m_indices(other.indices()) {} | 
 |  | 
 |   /** Generic constructor from expression of the indices. The indices | 
 |    * array has the meaning that the permutations sends each integer i to indices[i]. | 
 |    * | 
 |    * \warning It is your responsibility to check that the indices array that you passes actually | 
 |    * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the | 
 |    * array's size. | 
 |    */ | 
 |   template <typename Other> | 
 |   explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices) {} | 
 |  | 
 |   /** Convert the Transpositions \a tr to a permutation matrix */ | 
 |   template <typename Other> | 
 |   explicit PermutationMatrix(const TranspositionsBase<Other>& tr) : m_indices(tr.size()) { | 
 |     *this = tr; | 
 |   } | 
 |  | 
 |   /** Copies the other permutation into *this */ | 
 |   template <typename Other> | 
 |   PermutationMatrix& operator=(const PermutationBase<Other>& other) { | 
 |     m_indices = other.indices(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /** Assignment from the Transpositions \a tr */ | 
 |   template <typename Other> | 
 |   PermutationMatrix& operator=(const TranspositionsBase<Other>& tr) { | 
 |     return Base::operator=(tr.derived()); | 
 |   } | 
 |  | 
 |   /** const version of indices(). */ | 
 |   const IndicesType& indices() const { return m_indices; } | 
 |   /** \returns a reference to the stored array representing the permutation. */ | 
 |   IndicesType& indices() { return m_indices; } | 
 |  | 
 |   /**** multiplication helpers to hopefully get RVO ****/ | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   template <typename Other> | 
 |   PermutationMatrix(const InverseImpl<Other, PermutationStorage>& other) | 
 |       : m_indices(other.derived().nestedExpression().size()) { | 
 |     eigen_internal_assert(m_indices.size() <= NumTraits<StorageIndex>::highest()); | 
 |     StorageIndex end = StorageIndex(m_indices.size()); | 
 |     for (StorageIndex i = 0; i < end; ++i) | 
 |       m_indices.coeffRef(other.derived().nestedExpression().indices().coeff(i)) = i; | 
 |   } | 
 |   template <typename Lhs, typename Rhs> | 
 |   PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) : m_indices(lhs.indices().size()) { | 
 |     Base::assignProduct(lhs, rhs); | 
 |   } | 
 | #endif | 
 |  | 
 |  protected: | 
 |   IndicesType m_indices; | 
 | }; | 
 |  | 
 | namespace internal { | 
 | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_> | 
 | struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_> > | 
 |     : traits< | 
 |           Matrix<StorageIndex_, SizeAtCompileTime, SizeAtCompileTime, 0, MaxSizeAtCompileTime, MaxSizeAtCompileTime> > { | 
 |   typedef PermutationStorage StorageKind; | 
 |   typedef Map<const Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, PacketAccess_> IndicesType; | 
 |   typedef StorageIndex_ StorageIndex; | 
 |   typedef void Scalar; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_> | 
 | class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_> | 
 |     : public PermutationBase< | 
 |           Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_> > { | 
 |   typedef PermutationBase<Map> Base; | 
 |   typedef internal::traits<Map> Traits; | 
 |  | 
 |  public: | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   typedef typename Traits::IndicesType IndicesType; | 
 |   typedef typename IndicesType::Scalar StorageIndex; | 
 | #endif | 
 |  | 
 |   inline Map(const StorageIndex* indicesPtr) : m_indices(indicesPtr) {} | 
 |  | 
 |   inline Map(const StorageIndex* indicesPtr, Index size) : m_indices(indicesPtr, size) {} | 
 |  | 
 |   /** Copies the other permutation into *this */ | 
 |   template <typename Other> | 
 |   Map& operator=(const PermutationBase<Other>& other) { | 
 |     return Base::operator=(other.derived()); | 
 |   } | 
 |  | 
 |   /** Assignment from the Transpositions \a tr */ | 
 |   template <typename Other> | 
 |   Map& operator=(const TranspositionsBase<Other>& tr) { | 
 |     return Base::operator=(tr.derived()); | 
 |   } | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   /** This is a special case of the templated operator=. Its purpose is to | 
 |    * prevent a default operator= from hiding the templated operator=. | 
 |    */ | 
 |   Map& operator=(const Map& other) { | 
 |     m_indices = other.m_indices; | 
 |     return *this; | 
 |   } | 
 | #endif | 
 |  | 
 |   /** const version of indices(). */ | 
 |   const IndicesType& indices() const { return m_indices; } | 
 |   /** \returns a reference to the stored array representing the permutation. */ | 
 |   IndicesType& indices() { return m_indices; } | 
 |  | 
 |  protected: | 
 |   IndicesType m_indices; | 
 | }; | 
 |  | 
 | template <typename IndicesType_> | 
 | class TranspositionsWrapper; | 
 | namespace internal { | 
 | template <typename IndicesType_> | 
 | struct traits<PermutationWrapper<IndicesType_> > { | 
 |   typedef PermutationStorage StorageKind; | 
 |   typedef void Scalar; | 
 |   typedef typename IndicesType_::Scalar StorageIndex; | 
 |   typedef IndicesType_ IndicesType; | 
 |   enum { | 
 |     RowsAtCompileTime = IndicesType_::SizeAtCompileTime, | 
 |     ColsAtCompileTime = IndicesType_::SizeAtCompileTime, | 
 |     MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime, | 
 |     MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime, | 
 |     Flags = 0 | 
 |   }; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | /** \class PermutationWrapper | 
 |  * \ingroup Core_Module | 
 |  * | 
 |  * \brief Class to view a vector of integers as a permutation matrix | 
 |  * | 
 |  * \tparam IndicesType_ the type of the vector of integer (can be any compatible expression) | 
 |  * | 
 |  * This class allows to view any vector expression of integers as a permutation matrix. | 
 |  * | 
 |  * \sa class PermutationBase, class PermutationMatrix | 
 |  */ | 
 | template <typename IndicesType_> | 
 | class PermutationWrapper : public PermutationBase<PermutationWrapper<IndicesType_> > { | 
 |   typedef PermutationBase<PermutationWrapper> Base; | 
 |   typedef internal::traits<PermutationWrapper> Traits; | 
 |  | 
 |  public: | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   typedef typename Traits::IndicesType IndicesType; | 
 | #endif | 
 |  | 
 |   inline PermutationWrapper(const IndicesType& indices) : m_indices(indices) {} | 
 |  | 
 |   /** const version of indices(). */ | 
 |   const internal::remove_all_t<typename IndicesType::Nested>& indices() const { return m_indices; } | 
 |  | 
 |  protected: | 
 |   typename IndicesType::Nested m_indices; | 
 | }; | 
 |  | 
 | /** \returns the matrix with the permutation applied to the columns. | 
 |  */ | 
 | template <typename MatrixDerived, typename PermutationDerived> | 
 | EIGEN_DEVICE_FUNC const Product<MatrixDerived, PermutationDerived, AliasFreeProduct> operator*( | 
 |     const MatrixBase<MatrixDerived>& matrix, const PermutationBase<PermutationDerived>& permutation) { | 
 |   return Product<MatrixDerived, PermutationDerived, AliasFreeProduct>(matrix.derived(), permutation.derived()); | 
 | } | 
 |  | 
 | /** \returns the matrix with the permutation applied to the rows. | 
 |  */ | 
 | template <typename PermutationDerived, typename MatrixDerived> | 
 | EIGEN_DEVICE_FUNC const Product<PermutationDerived, MatrixDerived, AliasFreeProduct> operator*( | 
 |     const PermutationBase<PermutationDerived>& permutation, const MatrixBase<MatrixDerived>& matrix) { | 
 |   return Product<PermutationDerived, MatrixDerived, AliasFreeProduct>(permutation.derived(), matrix.derived()); | 
 | } | 
 |  | 
 | template <typename PermutationType> | 
 | class InverseImpl<PermutationType, PermutationStorage> : public EigenBase<Inverse<PermutationType> > { | 
 |   typedef typename PermutationType::PlainPermutationType PlainPermutationType; | 
 |   typedef internal::traits<PermutationType> PermTraits; | 
 |  | 
 |  protected: | 
 |   InverseImpl() {} | 
 |  | 
 |  public: | 
 |   typedef Inverse<PermutationType> InverseType; | 
 |   using EigenBase<Inverse<PermutationType> >::derived; | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   typedef typename PermutationType::DenseMatrixType DenseMatrixType; | 
 |   enum { | 
 |     RowsAtCompileTime = PermTraits::RowsAtCompileTime, | 
 |     ColsAtCompileTime = PermTraits::ColsAtCompileTime, | 
 |     MaxRowsAtCompileTime = PermTraits::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = PermTraits::MaxColsAtCompileTime | 
 |   }; | 
 | #endif | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   template <typename DenseDerived> | 
 |   void evalTo(MatrixBase<DenseDerived>& other) const { | 
 |     other.setZero(); | 
 |     for (Index i = 0; i < derived().rows(); ++i) | 
 |       other.coeffRef(i, derived().nestedExpression().indices().coeff(i)) = typename DenseDerived::Scalar(1); | 
 |   } | 
 | #endif | 
 |  | 
 |   /** \return the equivalent permutation matrix */ | 
 |   PlainPermutationType eval() const { return derived(); } | 
 |  | 
 |   DenseMatrixType toDenseMatrix() const { return derived(); } | 
 |  | 
 |   /** \returns the matrix with the inverse permutation applied to the columns. | 
 |    */ | 
 |   template <typename OtherDerived> | 
 |   friend const Product<OtherDerived, InverseType, AliasFreeProduct> operator*(const MatrixBase<OtherDerived>& matrix, | 
 |                                                                               const InverseType& trPerm) { | 
 |     return Product<OtherDerived, InverseType, AliasFreeProduct>(matrix.derived(), trPerm.derived()); | 
 |   } | 
 |  | 
 |   /** \returns the matrix with the inverse permutation applied to the rows. | 
 |    */ | 
 |   template <typename OtherDerived> | 
 |   const Product<InverseType, OtherDerived, AliasFreeProduct> operator*(const MatrixBase<OtherDerived>& matrix) const { | 
 |     return Product<InverseType, OtherDerived, AliasFreeProduct>(derived(), matrix.derived()); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Derived> | 
 | const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const { | 
 |   return derived(); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <> | 
 | struct AssignmentKind<DenseShape, PermutationShape> { | 
 |   typedef EigenBase2EigenBase Kind; | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_PERMUTATIONMATRIX_H |