|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_PERMUTATIONMATRIX_H | 
|  | #define EIGEN_PERMUTATIONMATRIX_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | enum PermPermProduct_t { PermPermProduct }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \class PermutationBase | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief Base class for permutations | 
|  | * | 
|  | * \tparam Derived the derived class | 
|  | * | 
|  | * This class is the base class for all expressions representing a permutation matrix, | 
|  | * internally stored as a vector of integers. | 
|  | * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix | 
|  | * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: | 
|  | *  \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] | 
|  | * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: | 
|  | *  \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] | 
|  | * | 
|  | * Permutation matrices are square and invertible. | 
|  | * | 
|  | * Notice that in addition to the member functions and operators listed here, there also are non-member | 
|  | * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase) | 
|  | * on either side. | 
|  | * | 
|  | * \sa class PermutationMatrix, class PermutationWrapper | 
|  | */ | 
|  | template <typename Derived> | 
|  | class PermutationBase : public EigenBase<Derived> { | 
|  | typedef internal::traits<Derived> Traits; | 
|  | typedef EigenBase<Derived> Base; | 
|  |  | 
|  | public: | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef typename Traits::IndicesType IndicesType; | 
|  | enum { | 
|  | Flags = Traits::Flags, | 
|  | RowsAtCompileTime = Traits::RowsAtCompileTime, | 
|  | ColsAtCompileTime = Traits::ColsAtCompileTime, | 
|  | MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = Traits::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename Traits::StorageIndex StorageIndex; | 
|  | typedef Matrix<StorageIndex, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> | 
|  | DenseMatrixType; | 
|  | typedef PermutationMatrix<IndicesType::SizeAtCompileTime, IndicesType::MaxSizeAtCompileTime, StorageIndex> | 
|  | PlainPermutationType; | 
|  | typedef PlainPermutationType PlainObject; | 
|  | using Base::derived; | 
|  | typedef Inverse<Derived> InverseReturnType; | 
|  | typedef void Scalar; | 
|  | #endif | 
|  |  | 
|  | /** Copies the other permutation into *this */ | 
|  | template <typename OtherDerived> | 
|  | Derived& operator=(const PermutationBase<OtherDerived>& other) { | 
|  | indices() = other.indices(); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** Assignment from the Transpositions \a tr */ | 
|  | template <typename OtherDerived> | 
|  | Derived& operator=(const TranspositionsBase<OtherDerived>& tr) { | 
|  | setIdentity(tr.size()); | 
|  | for (Index k = size() - 1; k >= 0; --k) applyTranspositionOnTheRight(k, tr.coeff(k)); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** \returns the number of rows */ | 
|  | inline EIGEN_DEVICE_FUNC Index rows() const { return Index(indices().size()); } | 
|  |  | 
|  | /** \returns the number of columns */ | 
|  | inline EIGEN_DEVICE_FUNC Index cols() const { return Index(indices().size()); } | 
|  |  | 
|  | /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ | 
|  | inline EIGEN_DEVICE_FUNC Index size() const { return Index(indices().size()); } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template <typename DenseDerived> | 
|  | void evalTo(MatrixBase<DenseDerived>& other) const { | 
|  | other.setZero(); | 
|  | for (Index i = 0; i < rows(); ++i) other.coeffRef(indices().coeff(i), i) = typename DenseDerived::Scalar(1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \returns a Matrix object initialized from this permutation matrix. Notice that it | 
|  | * is inefficient to return this Matrix object by value. For efficiency, favor using | 
|  | * the Matrix constructor taking EigenBase objects. | 
|  | */ | 
|  | DenseMatrixType toDenseMatrix() const { return derived(); } | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | const IndicesType& indices() const { return derived().indices(); } | 
|  | /** \returns a reference to the stored array representing the permutation. */ | 
|  | IndicesType& indices() { return derived().indices(); } | 
|  |  | 
|  | /** Resizes to given size. | 
|  | */ | 
|  | inline void resize(Index newSize) { indices().resize(newSize); } | 
|  |  | 
|  | /** Sets *this to be the identity permutation matrix */ | 
|  | void setIdentity() { | 
|  | StorageIndex n = StorageIndex(size()); | 
|  | for (StorageIndex i = 0; i < n; ++i) indices().coeffRef(i) = i; | 
|  | } | 
|  |  | 
|  | /** Sets *this to be the identity permutation matrix of given size. | 
|  | */ | 
|  | void setIdentity(Index newSize) { | 
|  | resize(newSize); | 
|  | setIdentity(); | 
|  | } | 
|  |  | 
|  | /** Multiplies *this by the transposition \f$(ij)\f$ on the left. | 
|  | * | 
|  | * \returns a reference to *this. | 
|  | * | 
|  | * \warning This is much slower than applyTranspositionOnTheRight(Index,Index): | 
|  | * this has linear complexity and requires a lot of branching. | 
|  | * | 
|  | * \sa applyTranspositionOnTheRight(Index,Index) | 
|  | */ | 
|  | Derived& applyTranspositionOnTheLeft(Index i, Index j) { | 
|  | eigen_assert(i >= 0 && j >= 0 && i < size() && j < size()); | 
|  | for (Index k = 0; k < size(); ++k) { | 
|  | if (indices().coeff(k) == i) | 
|  | indices().coeffRef(k) = StorageIndex(j); | 
|  | else if (indices().coeff(k) == j) | 
|  | indices().coeffRef(k) = StorageIndex(i); | 
|  | } | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** Multiplies *this by the transposition \f$(ij)\f$ on the right. | 
|  | * | 
|  | * \returns a reference to *this. | 
|  | * | 
|  | * This is a fast operation, it only consists in swapping two indices. | 
|  | * | 
|  | * \sa applyTranspositionOnTheLeft(Index,Index) | 
|  | */ | 
|  | Derived& applyTranspositionOnTheRight(Index i, Index j) { | 
|  | eigen_assert(i >= 0 && j >= 0 && i < size() && j < size()); | 
|  | std::swap(indices().coeffRef(i), indices().coeffRef(j)); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** \returns the inverse permutation matrix. | 
|  | * | 
|  | * \note \blank \note_try_to_help_rvo | 
|  | */ | 
|  | inline InverseReturnType inverse() const { return InverseReturnType(derived()); } | 
|  | /** \returns the tranpose permutation matrix. | 
|  | * | 
|  | * \note \blank \note_try_to_help_rvo | 
|  | */ | 
|  | inline InverseReturnType transpose() const { return InverseReturnType(derived()); } | 
|  |  | 
|  | /**** multiplication helpers to hopefully get RVO ****/ | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | protected: | 
|  | template <typename OtherDerived> | 
|  | void assignTranspose(const PermutationBase<OtherDerived>& other) { | 
|  | for (Index i = 0; i < rows(); ++i) indices().coeffRef(other.indices().coeff(i)) = i; | 
|  | } | 
|  | template <typename Lhs, typename Rhs> | 
|  | void assignProduct(const Lhs& lhs, const Rhs& rhs) { | 
|  | eigen_assert(lhs.cols() == rhs.rows()); | 
|  | for (Index i = 0; i < rows(); ++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | public: | 
|  | /** \returns the product permutation matrix. | 
|  | * | 
|  | * \note \blank \note_try_to_help_rvo | 
|  | */ | 
|  | template <typename Other> | 
|  | inline PlainPermutationType operator*(const PermutationBase<Other>& other) const { | 
|  | return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the product of a permutation with another inverse permutation. | 
|  | * | 
|  | * \note \blank \note_try_to_help_rvo | 
|  | */ | 
|  | template <typename Other> | 
|  | inline PlainPermutationType operator*(const InverseImpl<Other, PermutationStorage>& other) const { | 
|  | return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); | 
|  | } | 
|  |  | 
|  | /** \returns the product of an inverse permutation with another permutation. | 
|  | * | 
|  | * \note \blank \note_try_to_help_rvo | 
|  | */ | 
|  | template <typename Other> | 
|  | friend inline PlainPermutationType operator*(const InverseImpl<Other, PermutationStorage>& other, | 
|  | const PermutationBase& perm) { | 
|  | return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); | 
|  | } | 
|  |  | 
|  | /** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the | 
|  | * permutation. | 
|  | * | 
|  | * This function is O(\c n) procedure allocating a buffer of \c n booleans. | 
|  | */ | 
|  | Index determinant() const { | 
|  | Index res = 1; | 
|  | Index n = size(); | 
|  | Matrix<bool, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime> mask(n); | 
|  | mask.fill(false); | 
|  | Index r = 0; | 
|  | while (r < n) { | 
|  | // search for the next seed | 
|  | while (r < n && mask[r]) r++; | 
|  | if (r >= n) break; | 
|  | // we got one, let's follow it until we are back to the seed | 
|  | Index k0 = r++; | 
|  | mask.coeffRef(k0) = true; | 
|  | for (Index k = indices().coeff(k0); k != k0; k = indices().coeff(k)) { | 
|  | mask.coeffRef(k) = true; | 
|  | res = -res; | 
|  | } | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_> | 
|  | struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> > | 
|  | : traits< | 
|  | Matrix<StorageIndex_, SizeAtCompileTime, SizeAtCompileTime, 0, MaxSizeAtCompileTime, MaxSizeAtCompileTime> > { | 
|  | typedef PermutationStorage StorageKind; | 
|  | typedef Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; | 
|  | typedef StorageIndex_ StorageIndex; | 
|  | typedef void Scalar; | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | /** \class PermutationMatrix | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief Permutation matrix | 
|  | * | 
|  | * \tparam SizeAtCompileTime the number of rows/cols, or Dynamic | 
|  | * \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to | 
|  | * SizeAtCompileTime. Most of the time, you should not have to specify it. \tparam StorageIndex_ the integer type of the | 
|  | * indices | 
|  | * | 
|  | * This class represents a permutation matrix, internally stored as a vector of integers. | 
|  | * | 
|  | * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix | 
|  | */ | 
|  | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_> | 
|  | class PermutationMatrix | 
|  | : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> > { | 
|  | typedef PermutationBase<PermutationMatrix> Base; | 
|  | typedef internal::traits<PermutationMatrix> Traits; | 
|  |  | 
|  | public: | 
|  | typedef const PermutationMatrix& Nested; | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef typename Traits::IndicesType IndicesType; | 
|  | typedef typename Traits::StorageIndex StorageIndex; | 
|  | #endif | 
|  |  | 
|  | inline PermutationMatrix() {} | 
|  |  | 
|  | /** Constructs an uninitialized permutation matrix of given size. | 
|  | */ | 
|  | explicit inline PermutationMatrix(Index size) : m_indices(size) { | 
|  | eigen_internal_assert(size <= NumTraits<StorageIndex>::highest()); | 
|  | } | 
|  |  | 
|  | /** Copy constructor. */ | 
|  | template <typename OtherDerived> | 
|  | inline PermutationMatrix(const PermutationBase<OtherDerived>& other) : m_indices(other.indices()) {} | 
|  |  | 
|  | /** Generic constructor from expression of the indices. The indices | 
|  | * array has the meaning that the permutations sends each integer i to indices[i]. | 
|  | * | 
|  | * \warning It is your responsibility to check that the indices array that you passes actually | 
|  | * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the | 
|  | * array's size. | 
|  | */ | 
|  | template <typename Other> | 
|  | explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices) {} | 
|  |  | 
|  | /** Convert the Transpositions \a tr to a permutation matrix */ | 
|  | template <typename Other> | 
|  | explicit PermutationMatrix(const TranspositionsBase<Other>& tr) : m_indices(tr.size()) { | 
|  | *this = tr; | 
|  | } | 
|  |  | 
|  | /** Copies the other permutation into *this */ | 
|  | template <typename Other> | 
|  | PermutationMatrix& operator=(const PermutationBase<Other>& other) { | 
|  | m_indices = other.indices(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Assignment from the Transpositions \a tr */ | 
|  | template <typename Other> | 
|  | PermutationMatrix& operator=(const TranspositionsBase<Other>& tr) { | 
|  | return Base::operator=(tr.derived()); | 
|  | } | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | const IndicesType& indices() const { return m_indices; } | 
|  | /** \returns a reference to the stored array representing the permutation. */ | 
|  | IndicesType& indices() { return m_indices; } | 
|  |  | 
|  | /**** multiplication helpers to hopefully get RVO ****/ | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template <typename Other> | 
|  | PermutationMatrix(const InverseImpl<Other, PermutationStorage>& other) | 
|  | : m_indices(other.derived().nestedExpression().size()) { | 
|  | eigen_internal_assert(m_indices.size() <= NumTraits<StorageIndex>::highest()); | 
|  | StorageIndex end = StorageIndex(m_indices.size()); | 
|  | for (StorageIndex i = 0; i < end; ++i) | 
|  | m_indices.coeffRef(other.derived().nestedExpression().indices().coeff(i)) = i; | 
|  | } | 
|  | template <typename Lhs, typename Rhs> | 
|  | PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) : m_indices(lhs.indices().size()) { | 
|  | Base::assignProduct(lhs, rhs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | IndicesType m_indices; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_> | 
|  | struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_> > | 
|  | : traits< | 
|  | Matrix<StorageIndex_, SizeAtCompileTime, SizeAtCompileTime, 0, MaxSizeAtCompileTime, MaxSizeAtCompileTime> > { | 
|  | typedef PermutationStorage StorageKind; | 
|  | typedef Map<const Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, PacketAccess_> IndicesType; | 
|  | typedef StorageIndex_ StorageIndex; | 
|  | typedef void Scalar; | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_> | 
|  | class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_> | 
|  | : public PermutationBase< | 
|  | Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_> > { | 
|  | typedef PermutationBase<Map> Base; | 
|  | typedef internal::traits<Map> Traits; | 
|  |  | 
|  | public: | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef typename Traits::IndicesType IndicesType; | 
|  | typedef typename IndicesType::Scalar StorageIndex; | 
|  | #endif | 
|  |  | 
|  | inline Map(const StorageIndex* indicesPtr) : m_indices(indicesPtr) {} | 
|  |  | 
|  | inline Map(const StorageIndex* indicesPtr, Index size) : m_indices(indicesPtr, size) {} | 
|  |  | 
|  | /** Copies the other permutation into *this */ | 
|  | template <typename Other> | 
|  | Map& operator=(const PermutationBase<Other>& other) { | 
|  | return Base::operator=(other.derived()); | 
|  | } | 
|  |  | 
|  | /** Assignment from the Transpositions \a tr */ | 
|  | template <typename Other> | 
|  | Map& operator=(const TranspositionsBase<Other>& tr) { | 
|  | return Base::operator=(tr.derived()); | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** This is a special case of the templated operator=. Its purpose is to | 
|  | * prevent a default operator= from hiding the templated operator=. | 
|  | */ | 
|  | Map& operator=(const Map& other) { | 
|  | m_indices = other.m_indices; | 
|  | return *this; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | const IndicesType& indices() const { return m_indices; } | 
|  | /** \returns a reference to the stored array representing the permutation. */ | 
|  | IndicesType& indices() { return m_indices; } | 
|  |  | 
|  | protected: | 
|  | IndicesType m_indices; | 
|  | }; | 
|  |  | 
|  | template <typename IndicesType_> | 
|  | class TranspositionsWrapper; | 
|  | namespace internal { | 
|  | template <typename IndicesType_> | 
|  | struct traits<PermutationWrapper<IndicesType_> > { | 
|  | typedef PermutationStorage StorageKind; | 
|  | typedef void Scalar; | 
|  | typedef typename IndicesType_::Scalar StorageIndex; | 
|  | typedef IndicesType_ IndicesType; | 
|  | enum { | 
|  | RowsAtCompileTime = IndicesType_::SizeAtCompileTime, | 
|  | ColsAtCompileTime = IndicesType_::SizeAtCompileTime, | 
|  | MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime, | 
|  | MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime, | 
|  | Flags = 0 | 
|  | }; | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | /** \class PermutationWrapper | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief Class to view a vector of integers as a permutation matrix | 
|  | * | 
|  | * \tparam IndicesType_ the type of the vector of integer (can be any compatible expression) | 
|  | * | 
|  | * This class allows to view any vector expression of integers as a permutation matrix. | 
|  | * | 
|  | * \sa class PermutationBase, class PermutationMatrix | 
|  | */ | 
|  | template <typename IndicesType_> | 
|  | class PermutationWrapper : public PermutationBase<PermutationWrapper<IndicesType_> > { | 
|  | typedef PermutationBase<PermutationWrapper> Base; | 
|  | typedef internal::traits<PermutationWrapper> Traits; | 
|  |  | 
|  | public: | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef typename Traits::IndicesType IndicesType; | 
|  | #endif | 
|  |  | 
|  | inline PermutationWrapper(const IndicesType& indices) : m_indices(indices) {} | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | const internal::remove_all_t<typename IndicesType::Nested>& indices() const { return m_indices; } | 
|  |  | 
|  | protected: | 
|  | typename IndicesType::Nested m_indices; | 
|  | }; | 
|  |  | 
|  | /** \returns the matrix with the permutation applied to the columns. | 
|  | */ | 
|  | template <typename MatrixDerived, typename PermutationDerived> | 
|  | EIGEN_DEVICE_FUNC const Product<MatrixDerived, PermutationDerived, AliasFreeProduct> operator*( | 
|  | const MatrixBase<MatrixDerived>& matrix, const PermutationBase<PermutationDerived>& permutation) { | 
|  | return Product<MatrixDerived, PermutationDerived, AliasFreeProduct>(matrix.derived(), permutation.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix with the permutation applied to the rows. | 
|  | */ | 
|  | template <typename PermutationDerived, typename MatrixDerived> | 
|  | EIGEN_DEVICE_FUNC const Product<PermutationDerived, MatrixDerived, AliasFreeProduct> operator*( | 
|  | const PermutationBase<PermutationDerived>& permutation, const MatrixBase<MatrixDerived>& matrix) { | 
|  | return Product<PermutationDerived, MatrixDerived, AliasFreeProduct>(permutation.derived(), matrix.derived()); | 
|  | } | 
|  |  | 
|  | template <typename PermutationType> | 
|  | class InverseImpl<PermutationType, PermutationStorage> : public EigenBase<Inverse<PermutationType> > { | 
|  | typedef typename PermutationType::PlainPermutationType PlainPermutationType; | 
|  | typedef internal::traits<PermutationType> PermTraits; | 
|  |  | 
|  | protected: | 
|  | InverseImpl() {} | 
|  |  | 
|  | public: | 
|  | typedef Inverse<PermutationType> InverseType; | 
|  | using EigenBase<Inverse<PermutationType> >::derived; | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef typename PermutationType::DenseMatrixType DenseMatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = PermTraits::RowsAtCompileTime, | 
|  | ColsAtCompileTime = PermTraits::ColsAtCompileTime, | 
|  | MaxRowsAtCompileTime = PermTraits::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = PermTraits::MaxColsAtCompileTime | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template <typename DenseDerived> | 
|  | void evalTo(MatrixBase<DenseDerived>& other) const { | 
|  | other.setZero(); | 
|  | for (Index i = 0; i < derived().rows(); ++i) | 
|  | other.coeffRef(i, derived().nestedExpression().indices().coeff(i)) = typename DenseDerived::Scalar(1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \return the equivalent permutation matrix */ | 
|  | PlainPermutationType eval() const { return derived(); } | 
|  |  | 
|  | DenseMatrixType toDenseMatrix() const { return derived(); } | 
|  |  | 
|  | /** \returns the matrix with the inverse permutation applied to the columns. | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | friend const Product<OtherDerived, InverseType, AliasFreeProduct> operator*(const MatrixBase<OtherDerived>& matrix, | 
|  | const InverseType& trPerm) { | 
|  | return Product<OtherDerived, InverseType, AliasFreeProduct>(matrix.derived(), trPerm.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix with the inverse permutation applied to the rows. | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | const Product<InverseType, OtherDerived, AliasFreeProduct> operator*(const MatrixBase<OtherDerived>& matrix) const { | 
|  | return Product<InverseType, OtherDerived, AliasFreeProduct>(derived(), matrix.derived()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Derived> | 
|  | const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const { | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <> | 
|  | struct AssignmentKind<DenseShape, PermutationShape> { | 
|  | typedef EigenBase2EigenBase Kind; | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_PERMUTATIONMATRIX_H |