|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SKEWSYMMETRICMATRIX3_H | 
|  | #define EIGEN_SKEWSYMMETRICMATRIX3_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \class SkewSymmetricBase | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief Base class for skew symmetric matrices and expressions | 
|  | * | 
|  | * This is the base class that is inherited by SkewSymmetricMatrix3 and related expression | 
|  | * types, which internally use a three vector for storing the entries. SkewSymmetric | 
|  | * types always represent square three times three matrices. | 
|  | * | 
|  | * This implementations follows class DiagonalMatrix | 
|  | * | 
|  | * \tparam Derived is the derived type, a SkewSymmetricMatrix3 or SkewSymmetricWrapper. | 
|  | * | 
|  | * \sa class SkewSymmetricMatrix3, class SkewSymmetricWrapper | 
|  | */ | 
|  | template <typename Derived> | 
|  | class SkewSymmetricBase : public EigenBase<Derived> { | 
|  | public: | 
|  | typedef typename internal::traits<Derived>::SkewSymmetricVectorType SkewSymmetricVectorType; | 
|  | typedef typename SkewSymmetricVectorType::Scalar Scalar; | 
|  | typedef typename SkewSymmetricVectorType::RealScalar RealScalar; | 
|  | typedef typename internal::traits<Derived>::StorageKind StorageKind; | 
|  | typedef typename internal::traits<Derived>::StorageIndex StorageIndex; | 
|  |  | 
|  | enum { | 
|  | RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, | 
|  | ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, | 
|  | MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, | 
|  | MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, | 
|  | IsVectorAtCompileTime = 0, | 
|  | Flags = NoPreferredStorageOrderBit | 
|  | }; | 
|  |  | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> | 
|  | DenseMatrixType; | 
|  | typedef DenseMatrixType DenseType; | 
|  | typedef SkewSymmetricMatrix3<Scalar> PlainObject; | 
|  |  | 
|  | /** \returns a reference to the derived object. */ | 
|  | EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast<const Derived*>(this); } | 
|  | /** \returns a const reference to the derived object. */ | 
|  | EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast<Derived*>(this); } | 
|  |  | 
|  | /** | 
|  | * Constructs a dense matrix from \c *this. Note, this directly returns a dense matrix type, | 
|  | * not an expression. | 
|  | * \returns A dense matrix, with its entries set from the the derived object. */ | 
|  | EIGEN_DEVICE_FUNC DenseMatrixType toDenseMatrix() const { return derived(); } | 
|  |  | 
|  | /** Determinant vanishes */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar determinant() const { return 0; } | 
|  |  | 
|  | /** A.transpose() = -A */ | 
|  | EIGEN_DEVICE_FUNC PlainObject transpose() const { return (-vector()).asSkewSymmetric(); } | 
|  |  | 
|  | /** \returns the exponential of this matrix using Rodrigues’ formula */ | 
|  | EIGEN_DEVICE_FUNC DenseMatrixType exponential() const { | 
|  | DenseMatrixType retVal = DenseMatrixType::Identity(); | 
|  | const SkewSymmetricVectorType& v = vector(); | 
|  | if (v.isZero()) { | 
|  | return retVal; | 
|  | } | 
|  | const Scalar norm2 = v.squaredNorm(); | 
|  | const Scalar norm = numext::sqrt(norm2); | 
|  | retVal += ((((1 - numext::cos(norm)) / norm2) * derived()) * derived()) + | 
|  | (numext::sin(norm) / norm) * derived().toDenseMatrix(); | 
|  | return retVal; | 
|  | } | 
|  |  | 
|  | /** \returns a reference to the derived object's vector of coefficients. */ | 
|  | EIGEN_DEVICE_FUNC inline const SkewSymmetricVectorType& vector() const { return derived().vector(); } | 
|  | /** \returns a const reference to the derived object's vector of coefficients. */ | 
|  | EIGEN_DEVICE_FUNC inline SkewSymmetricVectorType& vector() { return derived().vector(); } | 
|  |  | 
|  | /** \returns the number of rows. */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const { return 3; } | 
|  | /** \returns the number of columns. */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const { return 3; } | 
|  |  | 
|  | /** \returns the matrix product of \c *this by the dense matrix, \a matrix */ | 
|  | template <typename MatrixDerived> | 
|  | EIGEN_DEVICE_FUNC Product<Derived, MatrixDerived, LazyProduct> operator*( | 
|  | const MatrixBase<MatrixDerived>& matrix) const { | 
|  | return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix product of \c *this by the skew symmetric matrix, \a matrix */ | 
|  | template <typename MatrixDerived> | 
|  | EIGEN_DEVICE_FUNC Product<Derived, MatrixDerived, LazyProduct> operator*( | 
|  | const SkewSymmetricBase<MatrixDerived>& matrix) const { | 
|  | return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived()); | 
|  | } | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | using SkewSymmetricProductReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE( | 
|  | SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, product)>; | 
|  |  | 
|  | /** \returns the wedge product of \c *this by the skew symmetric matrix \a other | 
|  | *  A wedge B = AB - BA */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC SkewSymmetricProductReturnType<OtherDerived> wedge( | 
|  | const SkewSymmetricBase<OtherDerived>& other) const { | 
|  | return vector().cross(other.vector()).asSkewSymmetric(); | 
|  | } | 
|  |  | 
|  | using SkewSymmetricScaleReturnType = | 
|  | SkewSymmetricWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(SkewSymmetricVectorType, Scalar, product)>; | 
|  |  | 
|  | /** \returns the product of \c *this by the scalar \a scalar */ | 
|  | EIGEN_DEVICE_FUNC inline SkewSymmetricScaleReturnType operator*(const Scalar& scalar) const { | 
|  | return (vector() * scalar).asSkewSymmetric(); | 
|  | } | 
|  |  | 
|  | using ScaleSkewSymmetricReturnType = | 
|  | SkewSymmetricWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar, SkewSymmetricVectorType, product)>; | 
|  |  | 
|  | /** \returns the product of a scalar and the skew symmetric matrix \a other */ | 
|  | EIGEN_DEVICE_FUNC friend inline ScaleSkewSymmetricReturnType operator*(const Scalar& scalar, | 
|  | const SkewSymmetricBase& other) { | 
|  | return (scalar * other.vector()).asSkewSymmetric(); | 
|  | } | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | using SkewSymmetricSumReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE( | 
|  | SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, sum)>; | 
|  |  | 
|  | /** \returns the sum of \c *this and the skew symmetric matrix \a other */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline SkewSymmetricSumReturnType<OtherDerived> operator+( | 
|  | const SkewSymmetricBase<OtherDerived>& other) const { | 
|  | return (vector() + other.vector()).asSkewSymmetric(); | 
|  | } | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | using SkewSymmetricDifferenceReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE( | 
|  | SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, difference)>; | 
|  |  | 
|  | /** \returns the difference of \c *this and the skew symmetric matrix \a other */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline SkewSymmetricDifferenceReturnType<OtherDerived> operator-( | 
|  | const SkewSymmetricBase<OtherDerived>& other) const { | 
|  | return (vector() - other.vector()).asSkewSymmetric(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \class SkewSymmetricMatrix3 | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief Represents a 3x3 skew symmetric matrix with its storage | 
|  | * | 
|  | * \tparam Scalar_ the type of coefficients | 
|  | * | 
|  | * \sa class SkewSymmetricBase, class SkewSymmetricWrapper | 
|  | */ | 
|  |  | 
|  | namespace internal { | 
|  | template <typename Scalar_> | 
|  | struct traits<SkewSymmetricMatrix3<Scalar_>> : traits<Matrix<Scalar_, 3, 3, 0, 3, 3>> { | 
|  | typedef Matrix<Scalar_, 3, 1, 0, 3, 1> SkewSymmetricVectorType; | 
|  | typedef SkewSymmetricShape StorageKind; | 
|  | enum { Flags = LvalueBit | NoPreferredStorageOrderBit | NestByRefBit }; | 
|  | }; | 
|  | }  // namespace internal | 
|  | template <typename Scalar_> | 
|  | class SkewSymmetricMatrix3 : public SkewSymmetricBase<SkewSymmetricMatrix3<Scalar_>> { | 
|  | public: | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef typename internal::traits<SkewSymmetricMatrix3>::SkewSymmetricVectorType SkewSymmetricVectorType; | 
|  | typedef const SkewSymmetricMatrix3& Nested; | 
|  | typedef Scalar_ Scalar; | 
|  | typedef typename internal::traits<SkewSymmetricMatrix3>::StorageKind StorageKind; | 
|  | typedef typename internal::traits<SkewSymmetricMatrix3>::StorageIndex StorageIndex; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | SkewSymmetricVectorType m_vector; | 
|  |  | 
|  | public: | 
|  | /** const version of vector(). */ | 
|  | EIGEN_DEVICE_FUNC inline const SkewSymmetricVectorType& vector() const { return m_vector; } | 
|  | /** \returns a reference to the stored vector of coefficients. */ | 
|  | EIGEN_DEVICE_FUNC inline SkewSymmetricVectorType& vector() { return m_vector; } | 
|  |  | 
|  | /** Default constructor without initialization */ | 
|  | EIGEN_DEVICE_FUNC inline SkewSymmetricMatrix3() {} | 
|  |  | 
|  | /** Constructor from three scalars */ | 
|  | EIGEN_DEVICE_FUNC inline SkewSymmetricMatrix3(const Scalar& x, const Scalar& y, const Scalar& z) | 
|  | : m_vector(x, y, z) {} | 
|  |  | 
|  | /** \brief Constructs a SkewSymmetricMatrix3 from an r-value vector type */ | 
|  | EIGEN_DEVICE_FUNC explicit inline SkewSymmetricMatrix3(SkewSymmetricVectorType&& vec) : m_vector(std::move(vec)) {} | 
|  |  | 
|  | /** generic constructor from expression of the coefficients */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC explicit inline SkewSymmetricMatrix3(const MatrixBase<OtherDerived>& other) : m_vector(other) {} | 
|  |  | 
|  | /** Copy constructor. */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline SkewSymmetricMatrix3(const SkewSymmetricBase<OtherDerived>& other) | 
|  | : m_vector(other.vector()) {} | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** copy constructor. prevent a default copy constructor from hiding the other templated constructor */ | 
|  | inline SkewSymmetricMatrix3(const SkewSymmetricMatrix3& other) : m_vector(other.vector()) {} | 
|  | #endif | 
|  |  | 
|  | /** Copy operator. */ | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC SkewSymmetricMatrix3& operator=(const SkewSymmetricBase<OtherDerived>& other) { | 
|  | m_vector = other.vector(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** This is a special case of the templated operator=. Its purpose is to | 
|  | * prevent a default operator= from hiding the templated operator=. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC SkewSymmetricMatrix3& operator=(const SkewSymmetricMatrix3& other) { | 
|  | m_vector = other.vector(); | 
|  | return *this; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | typedef SkewSymmetricWrapper<const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, SkewSymmetricVectorType>> | 
|  | InitializeReturnType; | 
|  |  | 
|  | /** Initializes a skew symmetric matrix with coefficients set to zero */ | 
|  | EIGEN_DEVICE_FUNC static InitializeReturnType Zero() { return SkewSymmetricVectorType::Zero().asSkewSymmetric(); } | 
|  |  | 
|  | /** Sets all coefficients to zero. */ | 
|  | EIGEN_DEVICE_FUNC inline void setZero() { m_vector.setZero(); } | 
|  | }; | 
|  |  | 
|  | /** \class SkewSymmetricWrapper | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief Expression of a skew symmetric matrix | 
|  | * | 
|  | * \tparam SkewSymmetricVectorType_ the type of the vector of coefficients | 
|  | * | 
|  | * This class is an expression of a skew symmetric matrix, but not storing its own vector of coefficients, | 
|  | * instead wrapping an existing vector expression. It is the return type of MatrixBase::asSkewSymmetric() | 
|  | * and most of the time this is the only way that it is used. | 
|  | * | 
|  | * \sa class SkewSymmetricMatrix3, class SkewSymmetricBase, MatrixBase::asSkewSymmetric() | 
|  | */ | 
|  |  | 
|  | namespace internal { | 
|  | template <typename SkewSymmetricVectorType_> | 
|  | struct traits<SkewSymmetricWrapper<SkewSymmetricVectorType_>> { | 
|  | typedef SkewSymmetricVectorType_ SkewSymmetricVectorType; | 
|  | typedef typename SkewSymmetricVectorType::Scalar Scalar; | 
|  | typedef typename SkewSymmetricVectorType::StorageIndex StorageIndex; | 
|  | typedef SkewSymmetricShape StorageKind; | 
|  | typedef typename traits<SkewSymmetricVectorType>::XprKind XprKind; | 
|  | enum { | 
|  | RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, | 
|  | ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, | 
|  | MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, | 
|  | MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, | 
|  | Flags = (traits<SkewSymmetricVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit | 
|  | }; | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | template <typename SkewSymmetricVectorType_> | 
|  | class SkewSymmetricWrapper : public SkewSymmetricBase<SkewSymmetricWrapper<SkewSymmetricVectorType_>>, | 
|  | internal::no_assignment_operator { | 
|  | public: | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef SkewSymmetricVectorType_ SkewSymmetricVectorType; | 
|  | typedef SkewSymmetricWrapper Nested; | 
|  | #endif | 
|  |  | 
|  | /** Constructor from expression of coefficients to wrap. */ | 
|  | EIGEN_DEVICE_FUNC explicit inline SkewSymmetricWrapper(SkewSymmetricVectorType& a_vector) : m_vector(a_vector) {} | 
|  |  | 
|  | /** \returns a const reference to the wrapped expression of coefficients. */ | 
|  | EIGEN_DEVICE_FUNC const SkewSymmetricVectorType& vector() const { return m_vector; } | 
|  |  | 
|  | protected: | 
|  | typename SkewSymmetricVectorType::Nested m_vector; | 
|  | }; | 
|  |  | 
|  | /** \returns a pseudo-expression of a skew symmetric matrix with *this as vector of coefficients | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * \sa class SkewSymmetricWrapper, class SkewSymmetricMatrix3, vector(), isSkewSymmetric() | 
|  | **/ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline const SkewSymmetricWrapper<const Derived> MatrixBase<Derived>::asSkewSymmetric() const { | 
|  | return SkewSymmetricWrapper<const Derived>(derived()); | 
|  | } | 
|  |  | 
|  | /** \returns true if *this is approximately equal to a skew symmetric matrix, | 
|  | *          within the precision given by \a prec. | 
|  | */ | 
|  | template <typename Derived> | 
|  | bool MatrixBase<Derived>::isSkewSymmetric(const RealScalar& prec) const { | 
|  | if (cols() != rows()) return false; | 
|  | return (this->transpose() + *this).isZero(prec); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix product of \c *this by the skew symmetric matrix \skew. | 
|  | */ | 
|  | template <typename Derived> | 
|  | template <typename SkewDerived> | 
|  | EIGEN_DEVICE_FUNC inline const Product<Derived, SkewDerived, LazyProduct> MatrixBase<Derived>::operator*( | 
|  | const SkewSymmetricBase<SkewDerived>& skew) const { | 
|  | return Product<Derived, SkewDerived, LazyProduct>(derived(), skew.derived()); | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <> | 
|  | struct storage_kind_to_shape<SkewSymmetricShape> { | 
|  | typedef SkewSymmetricShape Shape; | 
|  | }; | 
|  |  | 
|  | struct SkewSymmetric2Dense {}; | 
|  |  | 
|  | template <> | 
|  | struct AssignmentKind<DenseShape, SkewSymmetricShape> { | 
|  | typedef SkewSymmetric2Dense Kind; | 
|  | }; | 
|  |  | 
|  | // SkewSymmetric matrix to Dense assignment | 
|  | template <typename DstXprType, typename SrcXprType, typename Functor> | 
|  | struct Assignment<DstXprType, SrcXprType, Functor, SkewSymmetric2Dense> { | 
|  | EIGEN_DEVICE_FUNC static void run( | 
|  | DstXprType& dst, const SrcXprType& src, | 
|  | const internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) { | 
|  | if ((dst.rows() != 3) || (dst.cols() != 3)) { | 
|  | dst.resize(3, 3); | 
|  | } | 
|  | dst.diagonal().setZero(); | 
|  | const typename SrcXprType::SkewSymmetricVectorType v = src.vector(); | 
|  | dst(0, 1) = -v(2); | 
|  | dst(1, 0) = v(2); | 
|  | dst(0, 2) = v(1); | 
|  | dst(2, 0) = -v(1); | 
|  | dst(1, 2) = -v(0); | 
|  | dst(2, 1) = v(0); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC static void run( | 
|  | DstXprType& dst, const SrcXprType& src, | 
|  | const internal::add_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) { | 
|  | dst.vector() += src.vector(); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC static void run( | 
|  | DstXprType& dst, const SrcXprType& src, | 
|  | const internal::sub_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) { | 
|  | dst.vector() -= src.vector(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_SKEWSYMMETRICMATRIX3_H |