|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | /* | 
|  | NOTE: this routine has been adapted from the CSparse library: | 
|  |  | 
|  | Copyright (c) 2006, Timothy A. Davis. | 
|  | http://www.suitesparse.com | 
|  |  | 
|  | The author of CSparse, Timothy A. Davis., has executed a license with Google LLC | 
|  | to permit distribution of this code and derivative works as part of Eigen under | 
|  | the Mozilla Public License v. 2.0, as stated at the top of this file. | 
|  | */ | 
|  |  | 
|  | #ifndef EIGEN_SPARSE_AMD_H | 
|  | #define EIGEN_SPARSE_AMD_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename T> | 
|  | inline T amd_flip(const T& i) { | 
|  | return -i - 2; | 
|  | } | 
|  | template <typename T> | 
|  | inline T amd_unflip(const T& i) { | 
|  | return i < 0 ? amd_flip(i) : i; | 
|  | } | 
|  | template <typename T0, typename T1> | 
|  | inline bool amd_marked(const T0* w, const T1& j) { | 
|  | return w[j] < 0; | 
|  | } | 
|  | template <typename T0, typename T1> | 
|  | inline void amd_mark(const T0* w, const T1& j) { | 
|  | return w[j] = amd_flip(w[j]); | 
|  | } | 
|  |  | 
|  | /* clear w */ | 
|  | template <typename StorageIndex> | 
|  | static StorageIndex cs_wclear(StorageIndex mark, StorageIndex lemax, StorageIndex* w, StorageIndex n) { | 
|  | StorageIndex k; | 
|  | if (mark < 2 || (mark + lemax < 0)) { | 
|  | for (k = 0; k < n; k++) | 
|  | if (w[k] != 0) w[k] = 1; | 
|  | mark = 2; | 
|  | } | 
|  | return (mark); /* at this point, w[0..n-1] < mark holds */ | 
|  | } | 
|  |  | 
|  | /* depth-first search and postorder of a tree rooted at node j */ | 
|  | template <typename StorageIndex> | 
|  | StorageIndex cs_tdfs(StorageIndex j, StorageIndex k, StorageIndex* head, const StorageIndex* next, StorageIndex* post, | 
|  | StorageIndex* stack) { | 
|  | StorageIndex i, p, top = 0; | 
|  | if (!head || !next || !post || !stack) return (-1); /* check inputs */ | 
|  | stack[0] = j;                                       /* place j on the stack */ | 
|  | while (top >= 0)                                    /* while (stack is not empty) */ | 
|  | { | 
|  | p = stack[top]; /* p = top of stack */ | 
|  | i = head[p];    /* i = youngest child of p */ | 
|  | if (i == -1) { | 
|  | top--;         /* p has no unordered children left */ | 
|  | post[k++] = p; /* node p is the kth postordered node */ | 
|  | } else { | 
|  | head[p] = next[i]; /* remove i from children of p */ | 
|  | stack[++top] = i;  /* start dfs on child node i */ | 
|  | } | 
|  | } | 
|  | return k; | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \ingroup OrderingMethods_Module | 
|  | * Approximate minimum degree ordering algorithm. | 
|  | * | 
|  | * \param[in] C the input selfadjoint matrix stored in compressed column major format. | 
|  | * \param[out] perm the permutation P reducing the fill-in of the input matrix \a C | 
|  | * | 
|  | * Note that the input matrix \a C must be complete, that is both the upper and lower parts have to be stored, as well | 
|  | * as the diagonal entries. On exit the values of C are destroyed */ | 
|  | template <typename Scalar, typename StorageIndex> | 
|  | void minimum_degree_ordering(SparseMatrix<Scalar, ColMajor, StorageIndex>& C, | 
|  | PermutationMatrix<Dynamic, Dynamic, StorageIndex>& perm) { | 
|  | using std::sqrt; | 
|  |  | 
|  | StorageIndex d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, | 
|  | nvj, nvk, mark, wnvi, ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t, h; | 
|  |  | 
|  | StorageIndex n = StorageIndex(C.cols()); | 
|  | dense = std::max<StorageIndex>(16, StorageIndex(10 * sqrt(double(n)))); /* find dense threshold */ | 
|  | dense = (std::min)(n - 2, dense); | 
|  |  | 
|  | StorageIndex cnz = StorageIndex(C.nonZeros()); | 
|  | perm.resize(n + 1); | 
|  | t = cnz + cnz / 5 + 2 * n; /* add elbow room to C */ | 
|  | C.resizeNonZeros(t); | 
|  |  | 
|  | // get workspace | 
|  | ei_declare_aligned_stack_constructed_variable(StorageIndex, W, 8 * (n + 1), 0); | 
|  | StorageIndex* len = W; | 
|  | StorageIndex* nv = W + (n + 1); | 
|  | StorageIndex* next = W + 2 * (n + 1); | 
|  | StorageIndex* head = W + 3 * (n + 1); | 
|  | StorageIndex* elen = W + 4 * (n + 1); | 
|  | StorageIndex* degree = W + 5 * (n + 1); | 
|  | StorageIndex* w = W + 6 * (n + 1); | 
|  | StorageIndex* hhead = W + 7 * (n + 1); | 
|  | StorageIndex* last = perm.indices().data(); /* use P as workspace for last */ | 
|  |  | 
|  | /* --- Initialize quotient graph ---------------------------------------- */ | 
|  | StorageIndex* Cp = C.outerIndexPtr(); | 
|  | StorageIndex* Ci = C.innerIndexPtr(); | 
|  | for (k = 0; k < n; k++) len[k] = Cp[k + 1] - Cp[k]; | 
|  | len[n] = 0; | 
|  | nzmax = t; | 
|  |  | 
|  | for (i = 0; i <= n; i++) { | 
|  | head[i] = -1;  // degree list i is empty | 
|  | last[i] = -1; | 
|  | next[i] = -1; | 
|  | hhead[i] = -1;       // hash list i is empty | 
|  | nv[i] = 1;           // node i is just one node | 
|  | w[i] = 1;            // node i is alive | 
|  | elen[i] = 0;         // Ek of node i is empty | 
|  | degree[i] = len[i];  // degree of node i | 
|  | } | 
|  | mark = internal::cs_wclear<StorageIndex>(0, 0, w, n); /* clear w */ | 
|  |  | 
|  | /* --- Initialize degree lists ------------------------------------------ */ | 
|  | for (i = 0; i < n; i++) { | 
|  | bool has_diag = false; | 
|  | for (p = Cp[i]; p < Cp[i + 1]; ++p) | 
|  | if (Ci[p] == i) { | 
|  | has_diag = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | d = degree[i]; | 
|  | if (d == 1 && has_diag) /* node i is empty */ | 
|  | { | 
|  | elen[i] = -2; /* element i is dead */ | 
|  | nel++; | 
|  | Cp[i] = -1; /* i is a root of assembly tree */ | 
|  | w[i] = 0; | 
|  | } else if (d > dense || !has_diag) /* node i is dense or has no structural diagonal element */ | 
|  | { | 
|  | nv[i] = 0;    /* absorb i into element n */ | 
|  | elen[i] = -1; /* node i is dead */ | 
|  | nel++; | 
|  | Cp[i] = amd_flip(n); | 
|  | nv[n]++; | 
|  | } else { | 
|  | if (head[d] != -1) last[head[d]] = i; | 
|  | next[i] = head[d]; /* put node i in degree list d */ | 
|  | head[d] = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | elen[n] = -2; /* n is a dead element */ | 
|  | Cp[n] = -1;   /* n is a root of assembly tree */ | 
|  | w[n] = 0;     /* n is a dead element */ | 
|  |  | 
|  | while (nel < n) /* while (selecting pivots) do */ | 
|  | { | 
|  | /* --- Select node of minimum approximate degree -------------------- */ | 
|  | for (k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) { | 
|  | } | 
|  | if (next[k] != -1) last[next[k]] = -1; | 
|  | head[mindeg] = next[k]; /* remove k from degree list */ | 
|  | elenk = elen[k];        /* elenk = |Ek| */ | 
|  | nvk = nv[k];            /* # of nodes k represents */ | 
|  | nel += nvk;             /* nv[k] nodes of A eliminated */ | 
|  |  | 
|  | /* --- Garbage collection ------------------------------------------- */ | 
|  | if (elenk > 0 && cnz + mindeg >= nzmax) { | 
|  | for (j = 0; j < n; j++) { | 
|  | if ((p = Cp[j]) >= 0) /* j is a live node or element */ | 
|  | { | 
|  | Cp[j] = Ci[p];       /* save first entry of object */ | 
|  | Ci[p] = amd_flip(j); /* first entry is now amd_flip(j) */ | 
|  | } | 
|  | } | 
|  | for (q = 0, p = 0; p < cnz;) /* scan all of memory */ | 
|  | { | 
|  | if ((j = amd_flip(Ci[p++])) >= 0) /* found object j */ | 
|  | { | 
|  | Ci[q] = Cp[j]; /* restore first entry of object */ | 
|  | Cp[j] = q++;   /* new pointer to object j */ | 
|  | for (k3 = 0; k3 < len[j] - 1; k3++) Ci[q++] = Ci[p++]; | 
|  | } | 
|  | } | 
|  | cnz = q; /* Ci[cnz...nzmax-1] now free */ | 
|  | } | 
|  |  | 
|  | /* --- Construct new element ---------------------------------------- */ | 
|  | dk = 0; | 
|  | nv[k] = -nvk; /* flag k as in Lk */ | 
|  | p = Cp[k]; | 
|  | pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */ | 
|  | pk2 = pk1; | 
|  | for (k1 = 1; k1 <= elenk + 1; k1++) { | 
|  | if (k1 > elenk) { | 
|  | e = k;               /* search the nodes in k */ | 
|  | pj = p;              /* list of nodes starts at Ci[pj]*/ | 
|  | ln = len[k] - elenk; /* length of list of nodes in k */ | 
|  | } else { | 
|  | e = Ci[p++]; /* search the nodes in e */ | 
|  | pj = Cp[e]; | 
|  | ln = len[e]; /* length of list of nodes in e */ | 
|  | } | 
|  | for (k2 = 1; k2 <= ln; k2++) { | 
|  | i = Ci[pj++]; | 
|  | if ((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */ | 
|  | dk += nvi;                        /* degree[Lk] += size of node i */ | 
|  | nv[i] = -nvi;                     /* negate nv[i] to denote i in Lk*/ | 
|  | Ci[pk2++] = i;                    /* place i in Lk */ | 
|  | if (next[i] != -1) last[next[i]] = last[i]; | 
|  | if (last[i] != -1) /* remove i from degree list */ | 
|  | { | 
|  | next[last[i]] = next[i]; | 
|  | } else { | 
|  | head[degree[i]] = next[i]; | 
|  | } | 
|  | } | 
|  | if (e != k) { | 
|  | Cp[e] = amd_flip(k); /* absorb e into k */ | 
|  | w[e] = 0;            /* e is now a dead element */ | 
|  | } | 
|  | } | 
|  | if (elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */ | 
|  | degree[k] = dk;            /* external degree of k - |Lk\i| */ | 
|  | Cp[k] = pk1;               /* element k is in Ci[pk1..pk2-1] */ | 
|  | len[k] = pk2 - pk1; | 
|  | elen[k] = -2; /* k is now an element */ | 
|  |  | 
|  | /* --- Find set differences ----------------------------------------- */ | 
|  | mark = internal::cs_wclear<StorageIndex>(mark, lemax, w, n); /* clear w if necessary */ | 
|  | for (pk = pk1; pk < pk2; pk++)                               /* scan 1: find |Le\Lk| */ | 
|  | { | 
|  | i = Ci[pk]; | 
|  | if ((eln = elen[i]) <= 0) continue; /* skip if elen[i] empty */ | 
|  | nvi = -nv[i];                       /* nv[i] was negated */ | 
|  | wnvi = mark - nvi; | 
|  | for (p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */ | 
|  | { | 
|  | e = Ci[p]; | 
|  | if (w[e] >= mark) { | 
|  | w[e] -= nvi;        /* decrement |Le\Lk| */ | 
|  | } else if (w[e] != 0) /* ensure e is a live element */ | 
|  | { | 
|  | w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* --- Degree update ------------------------------------------------ */ | 
|  | for (pk = pk1; pk < pk2; pk++) /* scan2: degree update */ | 
|  | { | 
|  | i = Ci[pk]; /* consider node i in Lk */ | 
|  | p1 = Cp[i]; | 
|  | p2 = p1 + elen[i] - 1; | 
|  | pn = p1; | 
|  | for (h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */ | 
|  | { | 
|  | e = Ci[p]; | 
|  | if (w[e] != 0) /* e is an unabsorbed element */ | 
|  | { | 
|  | dext = w[e] - mark; /* dext = |Le\Lk| */ | 
|  | if (dext > 0) { | 
|  | d += dext;    /* sum up the set differences */ | 
|  | Ci[pn++] = e; /* keep e in Ei */ | 
|  | h += e;       /* compute the hash of node i */ | 
|  | } else { | 
|  | Cp[e] = amd_flip(k); /* aggressive absorb. e->k */ | 
|  | w[e] = 0;            /* e is a dead element */ | 
|  | } | 
|  | } | 
|  | } | 
|  | elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */ | 
|  | p3 = pn; | 
|  | p4 = p1 + len[i]; | 
|  | for (p = p2 + 1; p < p4; p++) /* prune edges in Ai */ | 
|  | { | 
|  | j = Ci[p]; | 
|  | if ((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */ | 
|  | d += nvj;                         /* degree(i) += |j| */ | 
|  | Ci[pn++] = j;                     /* place j in node list of i */ | 
|  | h += j;                           /* compute hash for node i */ | 
|  | } | 
|  | if (d == 0) /* check for mass elimination */ | 
|  | { | 
|  | Cp[i] = amd_flip(k); /* absorb i into k */ | 
|  | nvi = -nv[i]; | 
|  | dk -= nvi;  /* |Lk| -= |i| */ | 
|  | nvk += nvi; /* |k| += nv[i] */ | 
|  | nel += nvi; | 
|  | nv[i] = 0; | 
|  | elen[i] = -1; /* node i is dead */ | 
|  | } else { | 
|  | degree[i] = std::min<StorageIndex>(degree[i], d); /* update degree(i) */ | 
|  | Ci[pn] = Ci[p3];                                  /* move first node to end */ | 
|  | Ci[p3] = Ci[p1];                                  /* move 1st el. to end of Ei */ | 
|  | Ci[p1] = k;                                       /* add k as 1st element in of Ei */ | 
|  | len[i] = pn - p1 + 1;                             /* new len of adj. list of node i */ | 
|  | h %= n;                                           /* finalize hash of i */ | 
|  | next[i] = hhead[h];                               /* place i in hash bucket */ | 
|  | hhead[h] = i; | 
|  | last[i] = h; /* save hash of i in last[i] */ | 
|  | } | 
|  | }               /* scan2 is done */ | 
|  | degree[k] = dk; /* finalize |Lk| */ | 
|  | lemax = std::max<StorageIndex>(lemax, dk); | 
|  | mark = internal::cs_wclear<StorageIndex>(mark + lemax, lemax, w, n); /* clear w */ | 
|  |  | 
|  | /* --- Supernode detection ------------------------------------------ */ | 
|  | for (pk = pk1; pk < pk2; pk++) { | 
|  | i = Ci[pk]; | 
|  | if (nv[i] >= 0) continue; /* skip if i is dead */ | 
|  | h = last[i];              /* scan hash bucket of node i */ | 
|  | i = hhead[h]; | 
|  | hhead[h] = -1; /* hash bucket will be empty */ | 
|  | for (; i != -1 && next[i] != -1; i = next[i], mark++) { | 
|  | ln = len[i]; | 
|  | eln = elen[i]; | 
|  | for (p = Cp[i] + 1; p <= Cp[i] + ln - 1; p++) w[Ci[p]] = mark; | 
|  | jlast = i; | 
|  | for (j = next[i]; j != -1;) /* compare i with all j */ | 
|  | { | 
|  | ok = (len[j] == ln) && (elen[j] == eln); | 
|  | for (p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++) { | 
|  | if (w[Ci[p]] != mark) ok = 0; /* compare i and j*/ | 
|  | } | 
|  | if (ok) /* i and j are identical */ | 
|  | { | 
|  | Cp[j] = amd_flip(i); /* absorb j into i */ | 
|  | nv[i] += nv[j]; | 
|  | nv[j] = 0; | 
|  | elen[j] = -1; /* node j is dead */ | 
|  | j = next[j];  /* delete j from hash bucket */ | 
|  | next[jlast] = j; | 
|  | } else { | 
|  | jlast = j; /* j and i are different */ | 
|  | j = next[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* --- Finalize new element------------------------------------------ */ | 
|  | for (p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */ | 
|  | { | 
|  | i = Ci[pk]; | 
|  | if ((nvi = -nv[i]) <= 0) continue; /* skip if i is dead */ | 
|  | nv[i] = nvi;                       /* restore nv[i] */ | 
|  | d = degree[i] + dk - nvi;          /* compute external degree(i) */ | 
|  | d = std::min<StorageIndex>(d, n - nel - nvi); | 
|  | if (head[d] != -1) last[head[d]] = i; | 
|  | next[i] = head[d]; /* put i back in degree list */ | 
|  | last[i] = -1; | 
|  | head[d] = i; | 
|  | mindeg = std::min<StorageIndex>(mindeg, d); /* find new minimum degree */ | 
|  | degree[i] = d; | 
|  | Ci[p++] = i; /* place i in Lk */ | 
|  | } | 
|  | nv[k] = nvk;                 /* # nodes absorbed into k */ | 
|  | if ((len[k] = p - pk1) == 0) /* length of adj list of element k*/ | 
|  | { | 
|  | Cp[k] = -1; /* k is a root of the tree */ | 
|  | w[k] = 0;   /* k is now a dead element */ | 
|  | } | 
|  | if (elenk != 0) cnz = p; /* free unused space in Lk */ | 
|  | } | 
|  |  | 
|  | /* --- Postordering ----------------------------------------------------- */ | 
|  | for (i = 0; i < n; i++) Cp[i] = amd_flip(Cp[i]); /* fix assembly tree */ | 
|  | for (j = 0; j <= n; j++) head[j] = -1; | 
|  | for (j = n; j >= 0; j--) /* place unordered nodes in lists */ | 
|  | { | 
|  | if (nv[j] > 0) continue; /* skip if j is an element */ | 
|  | next[j] = head[Cp[j]];   /* place j in list of its parent */ | 
|  | head[Cp[j]] = j; | 
|  | } | 
|  | for (e = n; e >= 0; e--) /* place elements in lists */ | 
|  | { | 
|  | if (nv[e] <= 0) continue; /* skip unless e is an element */ | 
|  | if (Cp[e] != -1) { | 
|  | next[e] = head[Cp[e]]; /* place e in list of its parent */ | 
|  | head[Cp[e]] = e; | 
|  | } | 
|  | } | 
|  | for (k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */ | 
|  | { | 
|  | if (Cp[i] == -1) k = internal::cs_tdfs<StorageIndex>(i, k, head, next, perm.indices().data(), w); | 
|  | } | 
|  |  | 
|  | perm.indices().conservativeResize(n); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_SPARSE_AMD_H |