|  | #include <typeinfo> | 
|  | #include <iostream> | 
|  | #include <Eigen/Core> | 
|  | #include "BenchTimer.h" | 
|  | using namespace Eigen; | 
|  | using namespace std; | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(T& v) { | 
|  | return v.norm(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar stableNorm(T& v) { | 
|  | return v.stableNorm(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar hypotNorm(T& v) { | 
|  | return v.hypotNorm(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar blueNorm(T& v) { | 
|  | return v.blueNorm(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v) { | 
|  | typedef typename T::Scalar Scalar; | 
|  | int n = v.size(); | 
|  | Scalar scale = 0; | 
|  | Scalar ssq = 1; | 
|  | for (int i = 0; i < n; ++i) { | 
|  | Scalar ax = std::abs(v.coeff(i)); | 
|  | if (scale >= ax) { | 
|  | ssq += numext::abs2(ax / scale); | 
|  | } else { | 
|  | ssq = Scalar(1) + ssq * numext::abs2(scale / ax); | 
|  | scale = ax; | 
|  | } | 
|  | } | 
|  | return scale * std::sqrt(ssq); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v) { | 
|  | typedef typename T::Scalar Scalar; | 
|  | Scalar s = v.array().abs().maxCoeff(); | 
|  | return s * (v / s).norm(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v) { | 
|  | return v.stableNorm(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v) { | 
|  | int n = v.size() / 2; | 
|  | for (int i = 0; i < n; ++i) v(i) = v(2 * i) * v(2 * i) + v(2 * i + 1) * v(2 * i + 1); | 
|  | n = n / 2; | 
|  | while (n > 0) { | 
|  | for (int i = 0; i < n; ++i) v(i) = v(2 * i) + v(2 * i + 1); | 
|  | n = n / 2; | 
|  | } | 
|  | return std::sqrt(v(0)); | 
|  | } | 
|  |  | 
|  | namespace Eigen { | 
|  | namespace internal { | 
|  | #ifdef EIGEN_VECTORIZE | 
|  | Packet4f plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a, b); } | 
|  | Packet2d plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a, b); } | 
|  |  | 
|  | Packet4f pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a, b); } | 
|  | Packet2d pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a, b); } | 
|  | #endif | 
|  | }  // namespace internal | 
|  | }  // namespace Eigen | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v) { | 
|  | #ifndef EIGEN_VECTORIZE | 
|  | return v.blueNorm(); | 
|  | #else | 
|  | typedef typename T::Scalar Scalar; | 
|  |  | 
|  | static int nmax = 0; | 
|  | static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr; | 
|  | int n; | 
|  |  | 
|  | if (nmax <= 0) { | 
|  | int nbig, ibeta, it, iemin, iemax, iexp; | 
|  | Scalar abig, eps; | 
|  |  | 
|  | nbig = NumTraits<int>::highest();            // largest integer | 
|  | ibeta = std::numeric_limits<Scalar>::radix;  // NumTraits<Scalar>::Base;                    // base for | 
|  | // floating-point numbers | 
|  | it = NumTraits<Scalar>::digits();  // NumTraits<Scalar>::Mantissa;                // number of base-beta digits in | 
|  | // mantissa | 
|  | iemin = NumTraits<Scalar>::min_exponent();  // minimum exponent | 
|  | iemax = NumTraits<Scalar>::max_exponent();  // maximum exponent | 
|  | rbig = NumTraits<Scalar>::highest();        // largest floating-point number | 
|  |  | 
|  | // Check the basic machine-dependent constants. | 
|  | if (iemin > 1 - 2 * it || 1 + it > iemax || (it == 2 && ibeta < 5) || (it <= 4 && ibeta <= 3) || it < 2) { | 
|  | eigen_assert(false && "the algorithm cannot be guaranteed on this computer"); | 
|  | } | 
|  | iexp = -((1 - iemin) / 2); | 
|  | b1 = std::pow(ibeta, iexp);  // lower boundary of midrange | 
|  | iexp = (iemax + 1 - it) / 2; | 
|  | b2 = std::pow(ibeta, iexp);  // upper boundary of midrange | 
|  |  | 
|  | iexp = (2 - iemin) / 2; | 
|  | s1m = std::pow(ibeta, iexp);  // scaling factor for lower range | 
|  | iexp = -((iemax + it) / 2); | 
|  | s2m = std::pow(ibeta, iexp);  // scaling factor for upper range | 
|  |  | 
|  | overfl = rbig * s2m;  // overflow boundary for abig | 
|  | eps = std::pow(ibeta, 1 - it); | 
|  | relerr = std::sqrt(eps);  // tolerance for neglecting asml | 
|  | abig = 1.0 / eps - 1.0; | 
|  | if (Scalar(nbig) > abig) | 
|  | nmax = abig;  // largest safe n | 
|  | else | 
|  | nmax = nbig; | 
|  | } | 
|  |  | 
|  | typedef typename internal::packet_traits<Scalar>::type Packet; | 
|  | const int ps = internal::packet_traits<Scalar>::size; | 
|  | Packet pasml = internal::pset1<Packet>(Scalar(0)); | 
|  | Packet pamed = internal::pset1<Packet>(Scalar(0)); | 
|  | Packet pabig = internal::pset1<Packet>(Scalar(0)); | 
|  | Packet ps2m = internal::pset1<Packet>(s2m); | 
|  | Packet ps1m = internal::pset1<Packet>(s1m); | 
|  | Packet pb2 = internal::pset1<Packet>(b2); | 
|  | Packet pb1 = internal::pset1<Packet>(b1); | 
|  | for (int j = 0; j < v.size(); j += ps) { | 
|  | Packet ax = internal::pabs(v.template packet<Aligned>(j)); | 
|  | Packet ax_s2m = internal::pmul(ax, ps2m); | 
|  | Packet ax_s1m = internal::pmul(ax, ps1m); | 
|  | Packet maskBig = internal::plt(pb2, ax); | 
|  | Packet maskSml = internal::plt(ax, pb1); | 
|  |  | 
|  | //     Packet maskMed = internal::pand(maskSml,maskBig); | 
|  | //     Packet scale = internal::pset1(Scalar(0)); | 
|  | //     scale = internal::por(scale, internal::pand(maskBig,ps2m)); | 
|  | //     scale = internal::por(scale, internal::pand(maskSml,ps1m)); | 
|  | //     scale = internal::por(scale, internal::pandnot(internal::pset1(Scalar(1)),maskMed)); | 
|  | //     ax = internal::pmul(ax,scale); | 
|  | //     ax = internal::pmul(ax,ax); | 
|  | //     pabig = internal::padd(pabig, internal::pand(maskBig, ax)); | 
|  | //     pasml = internal::padd(pasml, internal::pand(maskSml, ax)); | 
|  | //     pamed = internal::padd(pamed, internal::pandnot(ax,maskMed)); | 
|  |  | 
|  | pabig = internal::padd(pabig, internal::pand(maskBig, internal::pmul(ax_s2m, ax_s2m))); | 
|  | pasml = internal::padd(pasml, internal::pand(maskSml, internal::pmul(ax_s1m, ax_s1m))); | 
|  | pamed = internal::padd(pamed, internal::pandnot(internal::pmul(ax, ax), internal::pand(maskSml, maskBig))); | 
|  | } | 
|  | Scalar abig = internal::predux(pabig); | 
|  | Scalar asml = internal::predux(pasml); | 
|  | Scalar amed = internal::predux(pamed); | 
|  | if (abig > Scalar(0)) { | 
|  | abig = std::sqrt(abig); | 
|  | if (abig > overfl) { | 
|  | eigen_assert(false && "overflow"); | 
|  | return rbig; | 
|  | } | 
|  | if (amed > Scalar(0)) { | 
|  | abig = abig / s2m; | 
|  | amed = std::sqrt(amed); | 
|  | } else { | 
|  | return abig / s2m; | 
|  | } | 
|  |  | 
|  | } else if (asml > Scalar(0)) { | 
|  | if (amed > Scalar(0)) { | 
|  | abig = std::sqrt(amed); | 
|  | amed = std::sqrt(asml) / s1m; | 
|  | } else { | 
|  | return std::sqrt(asml) / s1m; | 
|  | } | 
|  | } else { | 
|  | return std::sqrt(amed); | 
|  | } | 
|  | asml = std::min(abig, amed); | 
|  | abig = std::max(abig, amed); | 
|  | if (asml <= abig * relerr) | 
|  | return abig; | 
|  | else | 
|  | return abig * std::sqrt(Scalar(1) + numext::abs2(asml / abig)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define BENCH_PERF(NRM)                                                                              \ | 
|  | {                                                                                                  \ | 
|  | float af = 0;                                                                                    \ | 
|  | double ad = 0;                                                                                   \ | 
|  | std::complex<float> ac = 0;                                                                      \ | 
|  | Eigen::BenchTimer tf, td, tcf;                                                                   \ | 
|  | tf.reset();                                                                                      \ | 
|  | td.reset();                                                                                      \ | 
|  | tcf.reset();                                                                                     \ | 
|  | for (int k = 0; k < tries; ++k) {                                                                \ | 
|  | tf.start();                                                                                    \ | 
|  | for (int i = 0; i < iters; ++i) {                                                              \ | 
|  | af += NRM(vf);                                                                               \ | 
|  | }                                                                                              \ | 
|  | tf.stop();                                                                                     \ | 
|  | }                                                                                                \ | 
|  | for (int k = 0; k < tries; ++k) {                                                                \ | 
|  | td.start();                                                                                    \ | 
|  | for (int i = 0; i < iters; ++i) {                                                              \ | 
|  | ad += NRM(vd);                                                                               \ | 
|  | }                                                                                              \ | 
|  | td.stop();                                                                                     \ | 
|  | }                                                                                                \ | 
|  | /*for (int k=0; k<std::max(1,tries/3); ++k) {                                                    \ | 
|  | tcf.start();                                                                                   \ | 
|  | for (int i=0; i<iters; ++i) { ac += NRM(vcf); }                                                \ | 
|  | tcf.stop();                                                                                    \ | 
|  | } */                                                                                             \ | 
|  | std::cout << #NRM << "\t" << tf.value() << "   " << td.value() << "    " << tcf.value() << "\n"; \ | 
|  | } | 
|  |  | 
|  | void check_accuracy(double basef, double based, int s) { | 
|  | double yf = basef * std::abs(internal::random<double>()); | 
|  | double yd = based * std::abs(internal::random<double>()); | 
|  | VectorXf vf = VectorXf::Ones(s) * yf; | 
|  | VectorXd vd = VectorXd::Ones(s) * yd; | 
|  |  | 
|  | std::cout << "reference\t" << std::sqrt(double(s)) * yf << "\t" << std::sqrt(double(s)) * yd << "\n"; | 
|  | std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n"; | 
|  | std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n"; | 
|  | std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n"; | 
|  | std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n"; | 
|  | std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n"; | 
|  | std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n"; | 
|  | std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n"; | 
|  | } | 
|  |  | 
|  | void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s) { | 
|  | VectorXf vf(s); | 
|  | VectorXd vd(s); | 
|  | for (int i = 0; i < s; ++i) { | 
|  | vf[i] = std::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ef0, ef1)); | 
|  | vd[i] = std::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ed0, ed1)); | 
|  | } | 
|  |  | 
|  | // std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n"; | 
|  | std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\t" << sqsumNorm(vf.cast<long double>()) | 
|  | << "\t" << sqsumNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\t" << hypotNorm(vf.cast<long double>()) | 
|  | << "\t" << hypotNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" | 
|  | << blueNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) | 
|  | << "\t" << blueNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) | 
|  | << "\t" << lapackNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" | 
|  | << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n"; | 
|  | //   std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long | 
|  | //   double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n"; | 
|  | } | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | int tries = 10; | 
|  | int iters = 100000; | 
|  | double y = 1.1345743233455785456788e12 * internal::random<double>(); | 
|  | VectorXf v = VectorXf::Ones(1024) * y; | 
|  |  | 
|  | // return 0; | 
|  | int s = 10000; | 
|  | double basef_ok = 1.1345743233455785456788e15; | 
|  | double based_ok = 1.1345743233455785456788e95; | 
|  |  | 
|  | double basef_under = 1.1345743233455785456788e-27; | 
|  | double based_under = 1.1345743233455785456788e-303; | 
|  |  | 
|  | double basef_over = 1.1345743233455785456788e+27; | 
|  | double based_over = 1.1345743233455785456788e+302; | 
|  |  | 
|  | std::cout.precision(20); | 
|  |  | 
|  | std::cerr << "\nNo under/overflow:\n"; | 
|  | check_accuracy(basef_ok, based_ok, s); | 
|  |  | 
|  | std::cerr << "\nUnderflow:\n"; | 
|  | check_accuracy(basef_under, based_under, s); | 
|  |  | 
|  | std::cerr << "\nOverflow:\n"; | 
|  | check_accuracy(basef_over, based_over, s); | 
|  |  | 
|  | std::cerr << "\nVarying (over):\n"; | 
|  | for (int k = 0; k < 1; ++k) { | 
|  | check_accuracy_var(20, 27, 190, 302, s); | 
|  | std::cout << "\n"; | 
|  | } | 
|  |  | 
|  | std::cerr << "\nVarying (under):\n"; | 
|  | for (int k = 0; k < 1; ++k) { | 
|  | check_accuracy_var(-27, 20, -302, -190, s); | 
|  | std::cout << "\n"; | 
|  | } | 
|  |  | 
|  | y = 1; | 
|  | std::cout.precision(4); | 
|  | int s1 = 1024 * 1024 * 32; | 
|  | std::cerr << "Performance (out of cache, " << s1 << "):\n"; | 
|  | { | 
|  | int iters = 1; | 
|  | VectorXf vf = VectorXf::Random(s1) * y; | 
|  | VectorXd vd = VectorXd::Random(s1) * y; | 
|  | VectorXcf vcf = VectorXcf::Random(s1) * y; | 
|  | BENCH_PERF(sqsumNorm); | 
|  | BENCH_PERF(stableNorm); | 
|  | BENCH_PERF(blueNorm); | 
|  | BENCH_PERF(pblueNorm); | 
|  | BENCH_PERF(lapackNorm); | 
|  | BENCH_PERF(hypotNorm); | 
|  | BENCH_PERF(twopassNorm); | 
|  | BENCH_PERF(bl2passNorm); | 
|  | } | 
|  |  | 
|  | std::cerr << "\nPerformance (in cache, " << 512 << "):\n"; | 
|  | { | 
|  | int iters = 100000; | 
|  | VectorXf vf = VectorXf::Random(512) * y; | 
|  | VectorXd vd = VectorXd::Random(512) * y; | 
|  | VectorXcf vcf = VectorXcf::Random(512) * y; | 
|  | BENCH_PERF(sqsumNorm); | 
|  | BENCH_PERF(stableNorm); | 
|  | BENCH_PERF(blueNorm); | 
|  | BENCH_PERF(pblueNorm); | 
|  | BENCH_PERF(lapackNorm); | 
|  | BENCH_PERF(hypotNorm); | 
|  | BENCH_PERF(twopassNorm); | 
|  | BENCH_PERF(bl2passNorm); | 
|  | } | 
|  | } |