|  | 
 | #include <iostream> | 
 | #include <Eigen/Geometry> | 
 | #include <bench/BenchTimer.h> | 
 | using namespace Eigen; | 
 | using namespace std; | 
 |  | 
 | template <typename Q> | 
 | EIGEN_DONT_INLINE Q nlerp(const Q& a, const Q& b, typename Q::Scalar t) { | 
 |   return Q((a.coeffs() * (1.0 - t) + b.coeffs() * t).normalized()); | 
 | } | 
 |  | 
 | template <typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_eigen(const Q& a, const Q& b, typename Q::Scalar t) { | 
 |   return a.slerp(t, b); | 
 | } | 
 |  | 
 | template <typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_legacy(const Q& a, const Q& b, typename Q::Scalar t) { | 
 |   typedef typename Q::Scalar Scalar; | 
 |   static const Scalar one = Scalar(1) - dummy_precision<Scalar>(); | 
 |   Scalar d = a.dot(b); | 
 |   Scalar absD = internal::abs(d); | 
 |   if (absD >= one) return a; | 
 |  | 
 |   // theta is the angle between the 2 quaternions | 
 |   Scalar theta = std::acos(absD); | 
 |   Scalar sinTheta = internal::sin(theta); | 
 |  | 
 |   Scalar scale0 = internal::sin((Scalar(1) - t) * theta) / sinTheta; | 
 |   Scalar scale1 = internal::sin((t * theta)) / sinTheta; | 
 |   if (d < 0) scale1 = -scale1; | 
 |  | 
 |   return Q(scale0 * a.coeffs() + scale1 * b.coeffs()); | 
 | } | 
 |  | 
 | template <typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_legacy_nlerp(const Q& a, const Q& b, typename Q::Scalar t) { | 
 |   typedef typename Q::Scalar Scalar; | 
 |   static const Scalar one = Scalar(1) - epsilon<Scalar>(); | 
 |   Scalar d = a.dot(b); | 
 |   Scalar absD = internal::abs(d); | 
 |  | 
 |   Scalar scale0; | 
 |   Scalar scale1; | 
 |  | 
 |   if (absD >= one) { | 
 |     scale0 = Scalar(1) - t; | 
 |     scale1 = t; | 
 |   } else { | 
 |     // theta is the angle between the 2 quaternions | 
 |     Scalar theta = std::acos(absD); | 
 |     Scalar sinTheta = internal::sin(theta); | 
 |  | 
 |     scale0 = internal::sin((Scalar(1) - t) * theta) / sinTheta; | 
 |     scale1 = internal::sin((t * theta)) / sinTheta; | 
 |     if (d < 0) scale1 = -scale1; | 
 |   } | 
 |  | 
 |   return Q(scale0 * a.coeffs() + scale1 * b.coeffs()); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline T sin_over_x(T x) { | 
 |   if (T(1) + x * x == T(1)) | 
 |     return T(1); | 
 |   else | 
 |     return std::sin(x) / x; | 
 | } | 
 |  | 
 | template <typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_rw(const Q& a, const Q& b, typename Q::Scalar t) { | 
 |   typedef typename Q::Scalar Scalar; | 
 |  | 
 |   Scalar d = a.dot(b); | 
 |   Scalar theta; | 
 |   if (d < 0.0) | 
 |     theta = /*M_PI -*/ Scalar(2) * std::asin((a.coeffs() + b.coeffs()).norm() / 2); | 
 |   else | 
 |     theta = Scalar(2) * std::asin((a.coeffs() - b.coeffs()).norm() / 2); | 
 |  | 
 |   // theta is the angle between the 2 quaternions | 
 |   //   Scalar theta = std::acos(absD); | 
 |   Scalar sinOverTheta = sin_over_x(theta); | 
 |  | 
 |   Scalar scale0 = (Scalar(1) - t) * sin_over_x((Scalar(1) - t) * theta) / sinOverTheta; | 
 |   Scalar scale1 = t * sin_over_x((t * theta)) / sinOverTheta; | 
 |   if (d < 0) scale1 = -scale1; | 
 |  | 
 |   return Quaternion<Scalar>(scale0 * a.coeffs() + scale1 * b.coeffs()); | 
 | } | 
 |  | 
 | template <typename Q> | 
 | EIGEN_DONT_INLINE Q slerp_gael(const Q& a, const Q& b, typename Q::Scalar t) { | 
 |   typedef typename Q::Scalar Scalar; | 
 |  | 
 |   Scalar d = a.dot(b); | 
 |   Scalar theta; | 
 |   //   theta = Scalar(2) * atan2((a.coeffs()-b.coeffs()).norm(),(a.coeffs()+b.coeffs()).norm()); | 
 |   //   if (d<0.0) | 
 |   //     theta = M_PI-theta; | 
 |  | 
 |   if (d < 0.0) | 
 |     theta = /*M_PI -*/ Scalar(2) * std::asin((-a.coeffs() - b.coeffs()).norm() / 2); | 
 |   else | 
 |     theta = Scalar(2) * std::asin((a.coeffs() - b.coeffs()).norm() / 2); | 
 |  | 
 |   Scalar scale0; | 
 |   Scalar scale1; | 
 |   if (theta * theta - Scalar(6) == -Scalar(6)) { | 
 |     scale0 = Scalar(1) - t; | 
 |     scale1 = t; | 
 |   } else { | 
 |     Scalar sinTheta = std::sin(theta); | 
 |     scale0 = internal::sin((Scalar(1) - t) * theta) / sinTheta; | 
 |     scale1 = internal::sin((t * theta)) / sinTheta; | 
 |     if (d < 0) scale1 = -scale1; | 
 |   } | 
 |  | 
 |   return Quaternion<Scalar>(scale0 * a.coeffs() + scale1 * b.coeffs()); | 
 | } | 
 |  | 
 | int main() { | 
 |   typedef double RefScalar; | 
 |   typedef float TestScalar; | 
 |  | 
 |   typedef Quaternion<RefScalar> Qd; | 
 |   typedef Quaternion<TestScalar> Qf; | 
 |  | 
 |   unsigned int g_seed = (unsigned int)time(NULL); | 
 |   std::cout << g_seed << "\n"; | 
 |   //   g_seed = 1259932496; | 
 |   srand(g_seed); | 
 |  | 
 |   Matrix<RefScalar, Dynamic, 1> maxerr(7); | 
 |   maxerr.setZero(); | 
 |  | 
 |   Matrix<RefScalar, Dynamic, 1> avgerr(7); | 
 |   avgerr.setZero(); | 
 |  | 
 |   cout << "double=>float=>double       nlerp        eigen        legacy(snap)         legacy(nlerp)        rightway    " | 
 |           "     gael's criteria\n"; | 
 |  | 
 |   int rep = 100; | 
 |   int iters = 40; | 
 |   for (int w = 0; w < rep; ++w) { | 
 |     Qf a, b; | 
 |     a.coeffs().setRandom(); | 
 |     a.normalize(); | 
 |     b.coeffs().setRandom(); | 
 |     b.normalize(); | 
 |  | 
 |     Qf c[6]; | 
 |  | 
 |     Qd ar(a.cast<RefScalar>()); | 
 |     Qd br(b.cast<RefScalar>()); | 
 |     Qd cr; | 
 |  | 
 |     cout.precision(8); | 
 |     cout << std::scientific; | 
 |     for (int i = 0; i < iters; ++i) { | 
 |       RefScalar t = 0.65; | 
 |       cr = slerp_rw(ar, br, t); | 
 |  | 
 |       Qf refc = cr.cast<TestScalar>(); | 
 |       c[0] = nlerp(a, b, t); | 
 |       c[1] = slerp_eigen(a, b, t); | 
 |       c[2] = slerp_legacy(a, b, t); | 
 |       c[3] = slerp_legacy_nlerp(a, b, t); | 
 |       c[4] = slerp_rw(a, b, t); | 
 |       c[5] = slerp_gael(a, b, t); | 
 |  | 
 |       VectorXd err(7); | 
 |       err[0] = (cr.coeffs() - refc.cast<RefScalar>().coeffs()).norm(); | 
 |       //       std::cout << err[0] << "    "; | 
 |       for (int k = 0; k < 6; ++k) { | 
 |         err[k + 1] = (c[k].coeffs() - refc.coeffs()).norm(); | 
 |         //         std::cout << err[k+1] << "    "; | 
 |       } | 
 |       maxerr = maxerr.cwise().max(err); | 
 |       avgerr += err; | 
 |       //       std::cout << "\n"; | 
 |       b = cr.cast<TestScalar>(); | 
 |       br = cr; | 
 |     } | 
 |     //     std::cout << "\n"; | 
 |   } | 
 |   avgerr /= RefScalar(rep * iters); | 
 |   cout << "\n\nAccuracy:\n" | 
 |        << "  max: " << maxerr.transpose() << "\n"; | 
 |   cout << "  avg: " << avgerr.transpose() << "\n"; | 
 |  | 
 |   // perf bench | 
 |   Quaternionf a, b; | 
 |   a.coeffs().setRandom(); | 
 |   a.normalize(); | 
 |   b.coeffs().setRandom(); | 
 |   b.normalize(); | 
 |   // b = a; | 
 |   float s = 0.65; | 
 |  | 
 | #define BENCH(FUNC)                                           \ | 
 |   {                                                           \ | 
 |     BenchTimer t;                                             \ | 
 |     for (int k = 0; k < 2; ++k) {                             \ | 
 |       t.start();                                              \ | 
 |       for (int i = 0; i < 1000000; ++i) FUNC(a, b, s);        \ | 
 |       t.stop();                                               \ | 
 |     }                                                         \ | 
 |     cout << "  " << #FUNC << " => \t " << t.value() << "s\n"; \ | 
 |   } | 
 |  | 
 |   cout << "\nSpeed:\n" << std::fixed; | 
 |   BENCH(nlerp); | 
 |   BENCH(slerp_eigen); | 
 |   BENCH(slerp_legacy); | 
 |   BENCH(slerp_legacy_nlerp); | 
 |   BENCH(slerp_rw); | 
 |   BENCH(slerp_gael); | 
 | } |