|  | 
 | // g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && | 
 | // ./a.out g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 | 
 | // -DSIZE=2000 && ./a.out | 
 | //  -DNOGMM -DNOMTL | 
 | //  -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a | 
 |  | 
 | #ifndef SIZE | 
 | #define SIZE 10000 | 
 | #endif | 
 |  | 
 | #ifndef DENSITY | 
 | #define DENSITY 0.01 | 
 | #endif | 
 |  | 
 | #ifndef REPEAT | 
 | #define REPEAT 1 | 
 | #endif | 
 |  | 
 | #include "BenchSparseUtil.h" | 
 |  | 
 | #ifndef MINDENSITY | 
 | #define MINDENSITY 0.0004 | 
 | #endif | 
 |  | 
 | #ifndef NBTRIES | 
 | #define NBTRIES 10 | 
 | #endif | 
 |  | 
 | #define BENCH(X)                          \ | 
 |   timer.reset();                          \ | 
 |   for (int _j = 0; _j < NBTRIES; ++_j) {  \ | 
 |     timer.start();                        \ | 
 |     for (int _k = 0; _k < REPEAT; ++_k) { \ | 
 |       X                                   \ | 
 |     }                                     \ | 
 |     timer.stop();                         \ | 
 |   } | 
 |  | 
 | typedef SparseMatrix<Scalar, UpperTriangular> EigenSparseTriMatrix; | 
 | typedef SparseMatrix<Scalar, RowMajorBit | UpperTriangular> EigenSparseTriMatrixRow; | 
 |  | 
 | void fillMatrix(float density, int rows, int cols, EigenSparseTriMatrix &dst) { | 
 |   dst.startFill(rows * cols * density); | 
 |   for (int j = 0; j < cols; j++) { | 
 |     for (int i = 0; i < j; i++) { | 
 |       Scalar v = (internal::random<float>(0, 1) < density) ? internal::random<Scalar>() : 0; | 
 |       if (v != 0) dst.fill(i, j) = v; | 
 |     } | 
 |     dst.fill(j, j) = internal::random<Scalar>(); | 
 |   } | 
 |   dst.endFill(); | 
 | } | 
 |  | 
 | int main(int argc, char *argv[]) { | 
 |   int rows = SIZE; | 
 |   int cols = SIZE; | 
 |   float density = DENSITY; | 
 |   BenchTimer timer; | 
 | #if 1 | 
 |   EigenSparseTriMatrix sm1(rows, cols); | 
 |   typedef Matrix<Scalar, Dynamic, 1> DenseVector; | 
 |   DenseVector b = DenseVector::Random(cols); | 
 |   DenseVector x = DenseVector::Random(cols); | 
 |  | 
 |   bool densedone = false; | 
 |  | 
 |   for (float density = DENSITY; density >= MINDENSITY; density *= 0.5) { | 
 |     EigenSparseTriMatrix sm1(rows, cols); | 
 |     fillMatrix(density, rows, cols, sm1); | 
 |  | 
 | // dense matrices | 
 | #ifdef DENSEMATRIX | 
 |     if (!densedone) { | 
 |       densedone = true; | 
 |       std::cout << "Eigen Dense\t" << density * 100 << "%\n"; | 
 |       DenseMatrix m1(rows, cols); | 
 |       Matrix<Scalar, Dynamic, Dynamic, Dynamic, Dynamic, RowMajorBit> m2(rows, cols); | 
 |       eiToDense(sm1, m1); | 
 |       m2 = m1; | 
 |  | 
 |       BENCH(x = m1.marked<UpperTriangular>().solveTriangular(b);) | 
 |       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
 |       //       std::cerr << x.transpose() << "\n"; | 
 |  | 
 |       BENCH(x = m2.marked<UpperTriangular>().solveTriangular(b);) | 
 |       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl; | 
 |       //       std::cerr << x.transpose() << "\n"; | 
 |     } | 
 | #endif | 
 |  | 
 |     // eigen sparse matrices | 
 |     { | 
 |       std::cout << "Eigen sparse\t" << density * 100 << "%\n"; | 
 |       EigenSparseTriMatrixRow sm2 = sm1; | 
 |  | 
 |       BENCH(x = sm1.solveTriangular(b);) | 
 |       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
 |       //       std::cerr << x.transpose() << "\n"; | 
 |  | 
 |       BENCH(x = sm2.solveTriangular(b);) | 
 |       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl; | 
 |       //       std::cerr << x.transpose() << "\n"; | 
 |  | 
 |       //       x = b; | 
 |       //       BENCH(sm1.inverseProductInPlace(x);) | 
 |       //       std::cout << "   colmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl; | 
 |       //       std::cerr << x.transpose() << "\n"; | 
 |       // | 
 |       //       x = b; | 
 |       //       BENCH(sm2.inverseProductInPlace(x);) | 
 |       //       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl; | 
 |       //       std::cerr << x.transpose() << "\n"; | 
 |     } | 
 |  | 
 | // CSparse | 
 | #ifdef CSPARSE | 
 |     { | 
 |       std::cout << "CSparse \t" << density * 100 << "%\n"; | 
 |       cs *m1; | 
 |       eiToCSparse(sm1, m1); | 
 |  | 
 |       BENCH(x = b; if (!cs_lsolve(m1, x.data())) { | 
 |         std::cerr << "cs_lsolve failed\n"; | 
 |         break; | 
 |       };) | 
 |       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
 |     } | 
 | #endif | 
 |  | 
 | // GMM++ | 
 | #ifndef NOGMM | 
 |     { | 
 |       std::cout << "GMM++ sparse\t" << density * 100 << "%\n"; | 
 |       GmmSparse m1(rows, cols); | 
 |       gmm::csr_matrix<Scalar> m2; | 
 |       eiToGmm(sm1, m1); | 
 |       gmm::copy(m1, m2); | 
 |       std::vector<Scalar> gmmX(cols), gmmB(cols); | 
 |       Map<Matrix<Scalar, Dynamic, 1> >(&gmmX[0], cols) = x; | 
 |       Map<Matrix<Scalar, Dynamic, 1> >(&gmmB[0], cols) = b; | 
 |  | 
 |       gmmX = gmmB; | 
 |       BENCH(gmm::upper_tri_solve(m1, gmmX, false);) | 
 |       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
 |       //       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n"; | 
 |  | 
 |       gmmX = gmmB; | 
 |       BENCH(gmm::upper_tri_solve(m2, gmmX, false);) | 
 |       timer.stop(); | 
 |       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl; | 
 |       //       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n"; | 
 |     } | 
 | #endif | 
 |  | 
 | // MTL4 | 
 | #ifndef NOMTL | 
 |     { | 
 |       std::cout << "MTL4\t" << density * 100 << "%\n"; | 
 |       MtlSparse m1(rows, cols); | 
 |       MtlSparseRowMajor m2(rows, cols); | 
 |       eiToMtl(sm1, m1); | 
 |       m2 = m1; | 
 |       mtl::dense_vector<Scalar> x(rows, 1.0); | 
 |       mtl::dense_vector<Scalar> b(rows, 1.0); | 
 |  | 
 |       BENCH(x = mtl::upper_trisolve(m1, b);) | 
 |       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl; | 
 |       //       std::cerr << x << "\n"; | 
 |  | 
 |       BENCH(x = mtl::upper_trisolve(m2, b);) | 
 |       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl; | 
 |       //       std::cerr << x << "\n"; | 
 |     } | 
 | #endif | 
 |  | 
 |     std::cout << "\n\n"; | 
 |   } | 
 | #endif | 
 |  | 
 | #if 0 | 
 |     // bench small matrices (in-place versus return bye value) | 
 |     { | 
 |       timer.reset(); | 
 |       for (int _j=0; _j<10; ++_j) { | 
 |         Matrix4f m = Matrix4f::Random(); | 
 |         Vector4f b = Vector4f::Random(); | 
 |         Vector4f x = Vector4f::Random(); | 
 |         timer.start(); | 
 |         for (int _k=0; _k<1000000; ++_k) { | 
 |           b = m.inverseProduct(b); | 
 |         } | 
 |         timer.stop(); | 
 |       } | 
 |       std::cout << "4x4 :\t" << timer.value() << endl; | 
 |     } | 
 |  | 
 |     { | 
 |       timer.reset(); | 
 |       for (int _j=0; _j<10; ++_j) { | 
 |         Matrix4f m = Matrix4f::Random(); | 
 |         Vector4f b = Vector4f::Random(); | 
 |         Vector4f x = Vector4f::Random(); | 
 |         timer.start(); | 
 |         for (int _k=0; _k<1000000; ++_k) { | 
 |           m.inverseProductInPlace(x); | 
 |         } | 
 |         timer.stop(); | 
 |       } | 
 |       std::cout << "4x4 IP :\t" << timer.value() << endl; | 
 |     } | 
 | #endif | 
 |  | 
 |   return 0; | 
 | } |