|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include "random_without_cast_overflow.h" | 
|  |  | 
|  | template <typename MatrixType> | 
|  | std::enable_if_t<(MatrixType::RowsAtCompileTime == 1 || MatrixType::ColsAtCompileTime == 1), void> check_index( | 
|  | const MatrixType& m) { | 
|  | VERIFY_RAISES_ASSERT(m[0]); | 
|  | VERIFY_RAISES_ASSERT((m + m)[0]); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | std::enable_if_t<!(MatrixType::RowsAtCompileTime == 1 || MatrixType::ColsAtCompileTime == 1), void> check_index( | 
|  | const MatrixType& /*unused*/) {} | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void basicStuff(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // this test relies a lot on Random.h, and there's not much more that we can do | 
|  | // to test it, hence I consider that we will have tested Random.h | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); | 
|  | VectorType v1 = VectorType::Random(rows), vzero = VectorType::Zero(rows); | 
|  | SquareMatrixType sm1 = SquareMatrixType::Random(rows, rows), sm2(rows, rows); | 
|  |  | 
|  | Scalar x = 0; | 
|  | while (x == Scalar(0)) x = internal::random<Scalar>(); | 
|  |  | 
|  | Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); | 
|  |  | 
|  | m1.coeffRef(r, c) = x; | 
|  | VERIFY_IS_APPROX(x, m1.coeff(r, c)); | 
|  | m1(r, c) = x; | 
|  | VERIFY_IS_APPROX(x, m1(r, c)); | 
|  | v1.coeffRef(r) = x; | 
|  | VERIFY_IS_APPROX(x, v1.coeff(r)); | 
|  | v1(r) = x; | 
|  | VERIFY_IS_APPROX(x, v1(r)); | 
|  | v1[r] = x; | 
|  | VERIFY_IS_APPROX(x, v1[r]); | 
|  |  | 
|  | // test fetching with various index types. | 
|  | Index r1 = internal::random<Index>(0, numext::mini(Index(127), rows - 1)); | 
|  | x = v1(static_cast<char>(r1)); | 
|  | x = v1(static_cast<signed char>(r1)); | 
|  | x = v1(static_cast<unsigned char>(r1)); | 
|  | x = v1(static_cast<signed short>(r1)); | 
|  | x = v1(static_cast<unsigned short>(r1)); | 
|  | x = v1(static_cast<signed int>(r1)); | 
|  | x = v1(static_cast<unsigned int>(r1)); | 
|  | x = v1(static_cast<signed long>(r1)); | 
|  | x = v1(static_cast<unsigned long>(r1)); | 
|  | if (sizeof(Index) >= sizeof(long long int)) x = v1(static_cast<long long int>(r1)); | 
|  | if (sizeof(Index) >= sizeof(unsigned long long int)) x = v1(static_cast<unsigned long long int>(r1)); | 
|  |  | 
|  | VERIFY_IS_APPROX(v1, v1); | 
|  | VERIFY_IS_NOT_APPROX(v1, 2 * v1); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(vzero, v1); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(vzero, v1.squaredNorm()); | 
|  | VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); | 
|  | VERIFY_IS_APPROX(vzero, v1 - v1); | 
|  | VERIFY_IS_APPROX(m1, m1); | 
|  | VERIFY_IS_NOT_APPROX(m1, 2 * m1); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(mzero, m1); | 
|  | VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); | 
|  | VERIFY_IS_APPROX(mzero, m1 - m1); | 
|  |  | 
|  | // always test operator() on each read-only expression class, | 
|  | // in order to check const-qualifiers. | 
|  | // indeed, if an expression class (here Zero) is meant to be read-only, | 
|  | // hence has no _write() method, the corresponding MatrixBase method (here zero()) | 
|  | // should return a const-qualified object so that it is the const-qualified | 
|  | // operator() that gets called, which in turn calls _read(). | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols)(r, c), static_cast<Scalar>(1)); | 
|  |  | 
|  | // now test copying a row-vector into a (column-)vector and conversely. | 
|  | square.col(r) = square.row(r).eval(); | 
|  | Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); | 
|  | Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); | 
|  | rv = square.row(r); | 
|  | cv = square.col(r); | 
|  |  | 
|  | VERIFY_IS_APPROX(rv, cv.transpose()); | 
|  |  | 
|  | if (cols != 1 && rows != 1 && MatrixType::SizeAtCompileTime != Dynamic) { | 
|  | VERIFY_RAISES_ASSERT(m1 = (m2.block(0, 0, rows - 1, cols - 1))); | 
|  | } | 
|  |  | 
|  | if (cols != 1 && rows != 1) { | 
|  | check_index(m1); | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(m3 = m1, m1); | 
|  | MatrixType m4; | 
|  | VERIFY_IS_APPROX(m4 = m1, m1); | 
|  |  | 
|  | m3.real() = m1.real(); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real()); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real()); | 
|  |  | 
|  | // check == / != operators | 
|  | VERIFY(m1 == m1); | 
|  | VERIFY(m1 != m2); | 
|  | VERIFY(!(m1 == m2)); | 
|  | VERIFY(!(m1 != m1)); | 
|  | m1 = m2; | 
|  | VERIFY(m1 == m2); | 
|  | VERIFY(!(m1 != m2)); | 
|  |  | 
|  | // check automatic transposition | 
|  | sm2.setZero(); | 
|  | for (Index i = 0; i < rows; ++i) sm2.col(i) = sm1.row(i); | 
|  | VERIFY_IS_APPROX(sm2, sm1.transpose()); | 
|  |  | 
|  | sm2.setZero(); | 
|  | for (Index i = 0; i < rows; ++i) sm2.col(i).noalias() = sm1.row(i); | 
|  | VERIFY_IS_APPROX(sm2, sm1.transpose()); | 
|  |  | 
|  | sm2.setZero(); | 
|  | for (Index i = 0; i < rows; ++i) sm2.col(i).noalias() += sm1.row(i); | 
|  | VERIFY_IS_APPROX(sm2, sm1.transpose()); | 
|  |  | 
|  | sm2.setZero(); | 
|  | for (Index i = 0; i < rows; ++i) sm2.col(i).noalias() -= sm1.row(i); | 
|  | VERIFY_IS_APPROX(sm2, -sm1.transpose()); | 
|  |  | 
|  | // check ternary usage | 
|  | { | 
|  | bool b = internal::random<int>(0, 10) > 5; | 
|  | m3 = b ? m1 : m2; | 
|  | if (b) | 
|  | VERIFY_IS_APPROX(m3, m1); | 
|  | else | 
|  | VERIFY_IS_APPROX(m3, m2); | 
|  | m3 = b ? -m1 : m2; | 
|  | if (b) | 
|  | VERIFY_IS_APPROX(m3, -m1); | 
|  | else | 
|  | VERIFY_IS_APPROX(m3, m2); | 
|  | m3 = b ? m1 : -m2; | 
|  | if (b) | 
|  | VERIFY_IS_APPROX(m3, m1); | 
|  | else | 
|  | VERIFY_IS_APPROX(m3, -m2); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void basicStuffComplex(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(); | 
|  |  | 
|  | VERIFY(numext::real(s1) == numext::real_ref(s1)); | 
|  | VERIFY(numext::imag(s1) == numext::imag_ref(s1)); | 
|  | numext::real_ref(s1) = numext::real(s2); | 
|  | numext::imag_ref(s1) = numext::imag(s2); | 
|  | VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon())); | 
|  | // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed. | 
|  |  | 
|  | RealMatrixType rm1 = RealMatrixType::Random(rows, cols), rm2 = RealMatrixType::Random(rows, cols); | 
|  | MatrixType cm(rows, cols); | 
|  | cm.real() = rm1; | 
|  | cm.imag() = rm2; | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); | 
|  | rm1.setZero(); | 
|  | rm2.setZero(); | 
|  | rm1 = cm.real(); | 
|  | rm2 = cm.imag(); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); | 
|  | cm.real().setZero(); | 
|  | VERIFY(static_cast<const MatrixType&>(cm).real().isZero()); | 
|  | VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero()); | 
|  | } | 
|  |  | 
|  | template <typename SrcScalar, typename TgtScalar> | 
|  | struct casting_test { | 
|  | static void run() { | 
|  | Matrix<SrcScalar, 4, 4> m; | 
|  | for (int i = 0; i < m.rows(); ++i) { | 
|  | for (int j = 0; j < m.cols(); ++j) { | 
|  | m(i, j) = internal::random_without_cast_overflow<SrcScalar, TgtScalar>::value(); | 
|  | } | 
|  | } | 
|  | Matrix<TgtScalar, 4, 4> n = m.template cast<TgtScalar>(); | 
|  | for (int i = 0; i < m.rows(); ++i) { | 
|  | for (int j = 0; j < m.cols(); ++j) { | 
|  | VERIFY_IS_APPROX(n(i, j), (internal::cast<SrcScalar, TgtScalar>(m(i, j)))); | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename SrcScalar, typename EnableIf = void> | 
|  | struct casting_test_runner { | 
|  | static void run() { | 
|  | casting_test<SrcScalar, bool>::run(); | 
|  | casting_test<SrcScalar, int8_t>::run(); | 
|  | casting_test<SrcScalar, uint8_t>::run(); | 
|  | casting_test<SrcScalar, int16_t>::run(); | 
|  | casting_test<SrcScalar, uint16_t>::run(); | 
|  | casting_test<SrcScalar, int32_t>::run(); | 
|  | casting_test<SrcScalar, uint32_t>::run(); | 
|  | casting_test<SrcScalar, int64_t>::run(); | 
|  | casting_test<SrcScalar, uint64_t>::run(); | 
|  | casting_test<SrcScalar, half>::run(); | 
|  | casting_test<SrcScalar, bfloat16>::run(); | 
|  | casting_test<SrcScalar, float>::run(); | 
|  | casting_test<SrcScalar, double>::run(); | 
|  | casting_test<SrcScalar, std::complex<float>>::run(); | 
|  | casting_test<SrcScalar, std::complex<double>>::run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename SrcScalar> | 
|  | struct casting_test_runner<SrcScalar, std::enable_if_t<(NumTraits<SrcScalar>::IsComplex)>> { | 
|  | static void run() { | 
|  | // Only a few casts from std::complex<T> are defined. | 
|  | casting_test<SrcScalar, half>::run(); | 
|  | casting_test<SrcScalar, bfloat16>::run(); | 
|  | casting_test<SrcScalar, std::complex<float>>::run(); | 
|  | casting_test<SrcScalar, std::complex<double>>::run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | void casting_all() { | 
|  | casting_test_runner<bool>::run(); | 
|  | casting_test_runner<int8_t>::run(); | 
|  | casting_test_runner<uint8_t>::run(); | 
|  | casting_test_runner<int16_t>::run(); | 
|  | casting_test_runner<uint16_t>::run(); | 
|  | casting_test_runner<int32_t>::run(); | 
|  | casting_test_runner<uint32_t>::run(); | 
|  | casting_test_runner<int64_t>::run(); | 
|  | casting_test_runner<uint64_t>::run(); | 
|  | casting_test_runner<half>::run(); | 
|  | casting_test_runner<bfloat16>::run(); | 
|  | casting_test_runner<float>::run(); | 
|  | casting_test_runner<double>::run(); | 
|  | casting_test_runner<std::complex<float>>::run(); | 
|  | casting_test_runner<std::complex<double>>::run(); | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void fixedSizeMatrixConstruction() { | 
|  | Scalar raw[4]; | 
|  | for (int k = 0; k < 4; ++k) raw[k] = internal::random<Scalar>(); | 
|  |  | 
|  | { | 
|  | Matrix<Scalar, 4, 1> m(raw); | 
|  | Array<Scalar, 4, 1> a(raw); | 
|  | for (int k = 0; k < 4; ++k) VERIFY(m(k) == raw[k]); | 
|  | for (int k = 0; k < 4; ++k) VERIFY(a(k) == raw[k]); | 
|  | VERIFY_IS_EQUAL(m, (Matrix<Scalar, 4, 1>(raw[0], raw[1], raw[2], raw[3]))); | 
|  | VERIFY((a == (Array<Scalar, 4, 1>(raw[0], raw[1], raw[2], raw[3]))).all()); | 
|  | } | 
|  | { | 
|  | Matrix<Scalar, 3, 1> m(raw); | 
|  | Array<Scalar, 3, 1> a(raw); | 
|  | for (int k = 0; k < 3; ++k) VERIFY(m(k) == raw[k]); | 
|  | for (int k = 0; k < 3; ++k) VERIFY(a(k) == raw[k]); | 
|  | VERIFY_IS_EQUAL(m, (Matrix<Scalar, 3, 1>(raw[0], raw[1], raw[2]))); | 
|  | VERIFY((a == Array<Scalar, 3, 1>(raw[0], raw[1], raw[2])).all()); | 
|  | } | 
|  | { | 
|  | Matrix<Scalar, 2, 1> m(raw), m2((DenseIndex(raw[0])), (DenseIndex(raw[1]))); | 
|  | Array<Scalar, 2, 1> a(raw), a2((DenseIndex(raw[0])), (DenseIndex(raw[1]))); | 
|  | for (int k = 0; k < 2; ++k) VERIFY(m(k) == raw[k]); | 
|  | for (int k = 0; k < 2; ++k) VERIFY(a(k) == raw[k]); | 
|  | VERIFY_IS_EQUAL(m, (Matrix<Scalar, 2, 1>(raw[0], raw[1]))); | 
|  | VERIFY((a == Array<Scalar, 2, 1>(raw[0], raw[1])).all()); | 
|  | for (int k = 0; k < 2; ++k) VERIFY(m2(k) == DenseIndex(raw[k])); | 
|  | for (int k = 0; k < 2; ++k) VERIFY(a2(k) == DenseIndex(raw[k])); | 
|  | } | 
|  | { | 
|  | Matrix<Scalar, 1, 2> m(raw), m2((DenseIndex(raw[0])), (DenseIndex(raw[1]))), m3((int(raw[0])), (int(raw[1]))), | 
|  | m4((float(raw[0])), (float(raw[1]))); | 
|  | Array<Scalar, 1, 2> a(raw), a2((DenseIndex(raw[0])), (DenseIndex(raw[1]))); | 
|  | for (int k = 0; k < 2; ++k) VERIFY(m(k) == raw[k]); | 
|  | for (int k = 0; k < 2; ++k) VERIFY(a(k) == raw[k]); | 
|  | VERIFY_IS_EQUAL(m, (Matrix<Scalar, 1, 2>(raw[0], raw[1]))); | 
|  | VERIFY((a == Array<Scalar, 1, 2>(raw[0], raw[1])).all()); | 
|  | for (int k = 0; k < 2; ++k) VERIFY(m2(k) == DenseIndex(raw[k])); | 
|  | for (int k = 0; k < 2; ++k) VERIFY(a2(k) == DenseIndex(raw[k])); | 
|  | for (int k = 0; k < 2; ++k) VERIFY(m3(k) == int(raw[k])); | 
|  | for (int k = 0; k < 2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k]))); | 
|  | } | 
|  | { | 
|  | Matrix<Scalar, 1, 1> m(raw), m1(raw[0]), m2((DenseIndex(raw[0]))), m3((int(raw[0]))); | 
|  | Array<Scalar, 1, 1> a(raw), a1(raw[0]), a2((DenseIndex(raw[0]))); | 
|  | VERIFY(m(0) == raw[0]); | 
|  | VERIFY(a(0) == raw[0]); | 
|  | VERIFY(m1(0) == raw[0]); | 
|  | VERIFY(a1(0) == raw[0]); | 
|  | VERIFY(m2(0) == DenseIndex(raw[0])); | 
|  | VERIFY(a2(0) == DenseIndex(raw[0])); | 
|  | VERIFY(m3(0) == int(raw[0])); | 
|  | VERIFY_IS_EQUAL(m, (Matrix<Scalar, 1, 1>(raw[0]))); | 
|  | VERIFY((a == Array<Scalar, 1, 1>(raw[0])).all()); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(basicstuff) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(basicStuff(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(basicStuff(Matrix4d())); | 
|  | CALL_SUBTEST_3(basicStuff( | 
|  | MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_4(basicStuff( | 
|  | MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_5(basicStuff( | 
|  | MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_6(basicStuff(Matrix<float, 100, 100>())); | 
|  | CALL_SUBTEST_7(basicStuff(Matrix<long double, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), | 
|  | internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_8(casting_all()); | 
|  |  | 
|  | CALL_SUBTEST_3(basicStuffComplex( | 
|  | MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_5(basicStuffComplex( | 
|  | MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>()); | 
|  | } |