| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define EIGEN_RUNTIME_NO_MALLOC | 
 | #include "main.h" | 
 | #include <limits> | 
 | #include <Eigen/Eigenvalues> | 
 | #include <Eigen/LU> | 
 |  | 
 | template <typename MatrixType> | 
 | void generalized_eigensolver_real(const MatrixType& m) { | 
 |   /* this test covers the following files: | 
 |      GeneralizedEigenSolver.h | 
 |   */ | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef std::complex<Scalar> ComplexScalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
 |  | 
 |   MatrixType a = MatrixType::Random(rows, cols); | 
 |   MatrixType b = MatrixType::Random(rows, cols); | 
 |   MatrixType a1 = MatrixType::Random(rows, cols); | 
 |   MatrixType b1 = MatrixType::Random(rows, cols); | 
 |   MatrixType spdA = a.adjoint() * a + a1.adjoint() * a1; | 
 |   MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1; | 
 |  | 
 |   // lets compare to GeneralizedSelfAdjointEigenSolver | 
 |   { | 
 |     GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB); | 
 |     GeneralizedEigenSolver<MatrixType> eig(spdA, spdB); | 
 |  | 
 |     VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); | 
 |  | 
 |     VectorType realEigenvalues = eig.eigenvalues().real(); | 
 |     std::sort(realEigenvalues.data(), realEigenvalues.data() + realEigenvalues.size()); | 
 |     VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues()); | 
 |  | 
 |     // check eigenvectors | 
 |     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); | 
 |     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); | 
 |     VERIFY_IS_APPROX(spdA * V, spdB * V * D); | 
 |   } | 
 |  | 
 |   // non symmetric case: | 
 |   { | 
 |     GeneralizedEigenSolver<MatrixType> eig(rows); | 
 |     // TODO enable full-prealocation of required memory, this probably requires an in-place mode for | 
 |     // HessenbergDecomposition | 
 |     // Eigen::internal::set_is_malloc_allowed(false); | 
 |     eig.compute(a, b); | 
 |     // Eigen::internal::set_is_malloc_allowed(true); | 
 |     for (Index k = 0; k < cols; ++k) { | 
 |       Matrix<ComplexScalar, Dynamic, Dynamic> tmp = | 
 |           (eig.betas()(k) * a).template cast<ComplexScalar>() - eig.alphas()(k) * b; | 
 |       if (tmp.size() > 1 && tmp.norm() > (std::numeric_limits<Scalar>::min)()) tmp /= tmp.norm(); | 
 |       VERIFY_IS_MUCH_SMALLER_THAN(std::abs(tmp.determinant()), Scalar(1)); | 
 |     } | 
 |     // check eigenvectors | 
 |     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); | 
 |     typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); | 
 |     VERIFY_IS_APPROX(a * V, b * V * D); | 
 |   } | 
 |  | 
 |   // regression test for bug 1098 | 
 |   { | 
 |     GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a, b.adjoint() * b); | 
 |     eig1.compute(a.adjoint() * a, b.adjoint() * b); | 
 |     GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a, b.adjoint() * b); | 
 |     eig2.compute(a.adjoint() * a, b.adjoint() * b); | 
 |   } | 
 |  | 
 |   // check without eigenvectors | 
 |   { | 
 |     GeneralizedEigenSolver<MatrixType> eig1(spdA, spdB, true); | 
 |     GeneralizedEigenSolver<MatrixType> eig2(spdA, spdB, false); | 
 |     VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues()); | 
 |   } | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void generalized_eigensolver_assert() { | 
 |   GeneralizedEigenSolver<MatrixType> eig; | 
 |   // all raise assert if uninitialized | 
 |   VERIFY_RAISES_ASSERT(eig.info()); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvalues()); | 
 |   VERIFY_RAISES_ASSERT(eig.alphas()); | 
 |   VERIFY_RAISES_ASSERT(eig.betas()); | 
 |  | 
 |   // none raise assert after compute called | 
 |   eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20)); | 
 |   VERIFY(eig.info() == Success); | 
 |   eig.eigenvectors(); | 
 |   eig.eigenvalues(); | 
 |   eig.alphas(); | 
 |   eig.betas(); | 
 |  | 
 |   // eigenvectors() raises assert, if eigenvectors were not requested | 
 |   eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20), false); | 
 |   VERIFY(eig.info() == Success); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
 |   eig.eigenvalues(); | 
 |   eig.alphas(); | 
 |   eig.betas(); | 
 |  | 
 |   // all except info raise assert if realQZ did not converge | 
 |   eig.setMaxIterations(0);  // force real QZ to fail. | 
 |   eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20)); | 
 |   VERIFY(eig.info() == NoConvergence); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvalues()); | 
 |   VERIFY_RAISES_ASSERT(eig.alphas()); | 
 |   VERIFY_RAISES_ASSERT(eig.betas()); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(eigensolver_generalized_real) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     int s = 0; | 
 |     CALL_SUBTEST_1(generalized_eigensolver_real(Matrix4f())); | 
 |     s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4); | 
 |     CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(s, s))); | 
 |  | 
 |     // some trivial but implementation-wise special cases | 
 |     CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(1, 1))); | 
 |     CALL_SUBTEST_2(generalized_eigensolver_real(MatrixXd(2, 2))); | 
 |     CALL_SUBTEST_3(generalized_eigensolver_real(Matrix<double, 1, 1>())); | 
 |     CALL_SUBTEST_4(generalized_eigensolver_real(Matrix2d())); | 
 |     CALL_SUBTEST_5(generalized_eigensolver_assert<MatrixXd>()); | 
 |     TEST_SET_BUT_UNUSED_VARIABLE(s) | 
 |   } | 
 | } |