| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template <int Alignment, typename VectorType> | 
 | void map_class_vector(const VectorType& m) { | 
 |   typedef typename VectorType::Scalar Scalar; | 
 |  | 
 |   Index size = m.size(); | 
 |  | 
 |   VectorType v = VectorType::Random(size); | 
 |  | 
 |   Index arraysize = 3 * size; | 
 |  | 
 |   Scalar* a_array = internal::aligned_new<Scalar>(arraysize + 1); | 
 |   Scalar* array = a_array; | 
 |   if (Alignment != Aligned) | 
 |     array = (Scalar*)(std::intptr_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar | 
 |                                                     ? sizeof(Scalar) | 
 |                                                     : sizeof(typename NumTraits<Scalar>::Real))); | 
 |  | 
 |   { | 
 |     Map<VectorType, Alignment, InnerStride<3> > map(array, size); | 
 |     map = v; | 
 |     for (int i = 0; i < size; ++i) { | 
 |       VERIFY_IS_EQUAL(array[3 * i], v[i]); | 
 |       VERIFY_IS_EQUAL(map[i], v[i]); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2)); | 
 |     map = v; | 
 |     for (int i = 0; i < size; ++i) { | 
 |       VERIFY_IS_EQUAL(array[2 * i], v[i]); | 
 |       VERIFY_IS_EQUAL(map[i], v[i]); | 
 |     } | 
 |   } | 
 |  | 
 |   internal::aligned_delete(a_array, arraysize + 1); | 
 | } | 
 |  | 
 | template <int Alignment, typename MatrixType> | 
 | void map_class_matrix(const MatrixType& _m) { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index rows = _m.rows(), cols = _m.cols(); | 
 |  | 
 |   MatrixType m = MatrixType::Random(rows, cols); | 
 |   Scalar s1 = internal::random<Scalar>(); | 
 |  | 
 |   Index arraysize = 4 * (rows + 4) * (cols + 4); | 
 |  | 
 |   Scalar* a_array1 = internal::aligned_new<Scalar>(arraysize + 1); | 
 |   Scalar* array1 = a_array1; | 
 |   if (Alignment != Aligned) | 
 |     array1 = (Scalar*)(std::intptr_t(a_array1) + (internal::packet_traits<Scalar>::AlignedOnScalar | 
 |                                                       ? sizeof(Scalar) | 
 |                                                       : sizeof(typename NumTraits<Scalar>::Real))); | 
 |  | 
 |   Scalar a_array2[256]; | 
 |   Scalar* array2 = a_array2; | 
 |   if (Alignment != Aligned) { | 
 |     array2 = (Scalar*)(std::intptr_t(a_array2) + (internal::packet_traits<Scalar>::AlignedOnScalar | 
 |                                                       ? sizeof(Scalar) | 
 |                                                       : sizeof(typename NumTraits<Scalar>::Real))); | 
 |   } else { | 
 |     // In case there is no alignment, default to pointing to the start. | 
 |     constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); | 
 |     array2 = (Scalar*)(((std::uintptr_t(a_array2) + alignment - 1) / alignment) * alignment); | 
 |   } | 
 |   Index maxsize2 = a_array2 - array2 + 256; | 
 |  | 
 |   // test no inner stride and some dynamic outer stride | 
 |   for (int k = 0; k < 2; ++k) { | 
 |     if (k == 1 && (m.innerSize() + 1) * m.outerSize() > maxsize2) break; | 
 |     Scalar* array = (k == 0 ? array1 : array2); | 
 |  | 
 |     Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize() + 1)); | 
 |     map = m; | 
 |     VERIFY(map.outerStride() == map.innerSize() + 1); | 
 |     for (int i = 0; i < m.outerSize(); ++i) | 
 |       for (int j = 0; j < m.innerSize(); ++j) { | 
 |         VERIFY_IS_EQUAL(array[map.outerStride() * i + j], m.coeffByOuterInner(i, j)); | 
 |         VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); | 
 |       } | 
 |     VERIFY_IS_APPROX(s1 * map, s1 * m); | 
 |     map *= s1; | 
 |     VERIFY_IS_APPROX(map, s1 * m); | 
 |   } | 
 |  | 
 |   // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, | 
 |   // this allows to hit the special case where it's vectorizable. | 
 |   for (int k = 0; k < 2; ++k) { | 
 |     if (k == 1 && (m.innerSize() + 4) * m.outerSize() > maxsize2) break; | 
 |     Scalar* array = (k == 0 ? array1 : array2); | 
 |  | 
 |     enum { | 
 |       InnerSize = MatrixType::InnerSizeAtCompileTime, | 
 |       OuterStrideAtCompileTime = InnerSize == Dynamic ? Dynamic : InnerSize + 4 | 
 |     }; | 
 |     Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> > map( | 
 |         array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize() + 4)); | 
 |     map = m; | 
 |     VERIFY(map.outerStride() == map.innerSize() + 4); | 
 |     for (int i = 0; i < m.outerSize(); ++i) | 
 |       for (int j = 0; j < m.innerSize(); ++j) { | 
 |         VERIFY_IS_EQUAL(array[map.outerStride() * i + j], m.coeffByOuterInner(i, j)); | 
 |         VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); | 
 |       } | 
 |     VERIFY_IS_APPROX(s1 * map, s1 * m); | 
 |     map *= s1; | 
 |     VERIFY_IS_APPROX(map, s1 * m); | 
 |   } | 
 |  | 
 |   // test both inner stride and outer stride | 
 |   for (int k = 0; k < 2; ++k) { | 
 |     if (k == 1 && (2 * m.innerSize() + 1) * (m.outerSize() * 2) > maxsize2) break; | 
 |     Scalar* array = (k == 0 ? array1 : array2); | 
 |  | 
 |     Map<MatrixType, Alignment, Stride<Dynamic, Dynamic> > map(array, rows, cols, | 
 |                                                               Stride<Dynamic, Dynamic>(2 * m.innerSize() + 1, 2)); | 
 |     map = m; | 
 |     VERIFY(map.outerStride() == 2 * map.innerSize() + 1); | 
 |     VERIFY(map.innerStride() == 2); | 
 |     for (int i = 0; i < m.outerSize(); ++i) | 
 |       for (int j = 0; j < m.innerSize(); ++j) { | 
 |         VERIFY_IS_EQUAL(array[map.outerStride() * i + map.innerStride() * j], m.coeffByOuterInner(i, j)); | 
 |         VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); | 
 |       } | 
 |     VERIFY_IS_APPROX(s1 * map, s1 * m); | 
 |     map *= s1; | 
 |     VERIFY_IS_APPROX(map, s1 * m); | 
 |   } | 
 |  | 
 |   // test inner stride and no outer stride | 
 |   for (int k = 0; k < 2; ++k) { | 
 |     if (k == 1 && (m.innerSize() * 2) * m.outerSize() > maxsize2) break; | 
 |     Scalar* array = (k == 0 ? array1 : array2); | 
 |  | 
 |     Map<MatrixType, Alignment, InnerStride<Dynamic> > map(array, rows, cols, InnerStride<Dynamic>(2)); | 
 |     map = m; | 
 |     VERIFY(map.outerStride() == map.innerSize() * 2); | 
 |     for (int i = 0; i < m.outerSize(); ++i) | 
 |       for (int j = 0; j < m.innerSize(); ++j) { | 
 |         VERIFY_IS_EQUAL(array[map.innerSize() * i * 2 + j * 2], m.coeffByOuterInner(i, j)); | 
 |         VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); | 
 |       } | 
 |     VERIFY_IS_APPROX(s1 * map, s1 * m); | 
 |     map *= s1; | 
 |     VERIFY_IS_APPROX(map, s1 * m); | 
 |   } | 
 |  | 
 |   // test negative strides | 
 |   { | 
 |     Matrix<Scalar, Dynamic, 1>::Map(a_array1, arraysize + 1).setRandom(); | 
 |     Index outerstride = m.innerSize() + 4; | 
 |     Scalar* array = array1; | 
 |  | 
 |     { | 
 |       Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>(outerstride)); | 
 |       Map<MatrixType, Unaligned, OuterStride<> > map2(array + (m.outerSize() - 1) * outerstride, rows, cols, | 
 |                                                       OuterStride<>(-outerstride)); | 
 |       if (MatrixType::IsRowMajor) | 
 |         VERIFY_IS_APPROX(map1.colwise().reverse(), map2); | 
 |       else | 
 |         VERIFY_IS_APPROX(map1.rowwise().reverse(), map2); | 
 |     } | 
 |  | 
 |     { | 
 |       Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>(outerstride)); | 
 |       Map<MatrixType, Unaligned, Stride<Dynamic, Dynamic> > map2( | 
 |           array + (m.outerSize() - 1) * outerstride + m.innerSize() - 1, rows, cols, | 
 |           Stride<Dynamic, Dynamic>(-outerstride, -1)); | 
 |       VERIFY_IS_APPROX(map1.reverse(), map2); | 
 |     } | 
 |  | 
 |     { | 
 |       Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>(outerstride)); | 
 |       Map<MatrixType, Unaligned, Stride<Dynamic, -1> > map2( | 
 |           array + (m.outerSize() - 1) * outerstride + m.innerSize() - 1, rows, cols, | 
 |           Stride<Dynamic, -1>(-outerstride, -1)); | 
 |       VERIFY_IS_APPROX(map1.reverse(), map2); | 
 |     } | 
 |   } | 
 |  | 
 |   internal::aligned_delete(a_array1, arraysize + 1); | 
 | } | 
 |  | 
 | // Additional tests for inner-stride but no outer-stride | 
 | template <int> | 
 | void bug1453() { | 
 |   const int data[] = {0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15, | 
 |                       16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; | 
 |   typedef Matrix<int, Dynamic, Dynamic, RowMajor> RowMatrixXi; | 
 |   typedef Matrix<int, 2, 3, ColMajor> ColMatrix23i; | 
 |   typedef Matrix<int, 3, 2, ColMajor> ColMatrix32i; | 
 |   typedef Matrix<int, 2, 3, RowMajor> RowMatrix23i; | 
 |   typedef Matrix<int, 3, 2, RowMajor> RowMatrix32i; | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); | 
 |   VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); | 
 |   VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); | 
 |   VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); | 
 |  | 
 |   VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); | 
 |   VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); | 
 |   VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); | 
 |   VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); | 
 |  | 
 |   VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); | 
 |   VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); | 
 |   VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); | 
 |   VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); | 
 |  | 
 |   VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); | 
 |   VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); | 
 |   VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); | 
 |   VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(mapstride) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     int maxn = 3; | 
 |     CALL_SUBTEST_1(map_class_vector<Aligned>(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_1(map_class_vector<Unaligned>(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_2(map_class_vector<Aligned>(Vector4d())); | 
 |     CALL_SUBTEST_2(map_class_vector<Unaligned>(Vector4d())); | 
 |     CALL_SUBTEST_3(map_class_vector<Aligned>(RowVector4f())); | 
 |     CALL_SUBTEST_3(map_class_vector<Unaligned>(RowVector4f())); | 
 |     CALL_SUBTEST_4(map_class_vector<Aligned>(VectorXcf(internal::random<int>(1, maxn)))); | 
 |     CALL_SUBTEST_4(map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1, maxn)))); | 
 |     CALL_SUBTEST_5(map_class_vector<Aligned>(VectorXi(internal::random<int>(1, maxn)))); | 
 |     CALL_SUBTEST_5(map_class_vector<Unaligned>(VectorXi(internal::random<int>(1, maxn)))); | 
 |  | 
 |     CALL_SUBTEST_1(map_class_matrix<Aligned>(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_1(map_class_matrix<Unaligned>(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_2(map_class_matrix<Aligned>(Matrix4d())); | 
 |     CALL_SUBTEST_2(map_class_matrix<Unaligned>(Matrix4d())); | 
 |     CALL_SUBTEST_3(map_class_matrix<Aligned>(Matrix<float, 3, 5>())); | 
 |     CALL_SUBTEST_3(map_class_matrix<Unaligned>(Matrix<float, 3, 5>())); | 
 |     CALL_SUBTEST_3(map_class_matrix<Aligned>(Matrix<float, 4, 8>())); | 
 |     CALL_SUBTEST_3(map_class_matrix<Unaligned>(Matrix<float, 4, 8>())); | 
 |     CALL_SUBTEST_4( | 
 |         map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
 |     CALL_SUBTEST_4( | 
 |         map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
 |     CALL_SUBTEST_5(map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
 |     CALL_SUBTEST_5( | 
 |         map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
 |     CALL_SUBTEST_6( | 
 |         map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
 |     CALL_SUBTEST_6( | 
 |         map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
 |  | 
 |     CALL_SUBTEST_5(bug1453<0>()); | 
 |  | 
 |     TEST_SET_BUT_UNUSED_VARIABLE(maxn); | 
 |   } | 
 | } |