| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_TESTSPARSE_H | 
 | #define EIGEN_TESTSPARSE_H | 
 |  | 
 | #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET | 
 |  | 
 | #include "main.h" | 
 |  | 
 | #ifdef min | 
 | #undef min | 
 | #endif | 
 |  | 
 | #ifdef max | 
 | #undef max | 
 | #endif | 
 |  | 
 | #include <unordered_map> | 
 | #define EIGEN_UNORDERED_MAP_SUPPORT | 
 |  | 
 | #include <Eigen/Cholesky> | 
 | #include <Eigen/LU> | 
 | #include <Eigen/Sparse> | 
 |  | 
 | enum { ForceNonZeroDiag = 1, MakeLowerTriangular = 2, MakeUpperTriangular = 4, ForceRealDiag = 8 }; | 
 |  | 
 | /* Initializes both a sparse and dense matrix with same random values, | 
 |  * and a ratio of \a density non zero entries. | 
 |  * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular | 
 |  *        allowing to control the shape of the matrix. | 
 |  * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero, | 
 |  *        and zero coefficients respectively. | 
 |  */ | 
 | template <typename Scalar, int Opt1, int Opt2, typename StorageIndex> | 
 | void initSparse(double density, Matrix<Scalar, Dynamic, Dynamic, Opt1>& refMat, | 
 |                 SparseMatrix<Scalar, Opt2, StorageIndex>& sparseMat, int flags = 0, | 
 |                 std::vector<Matrix<StorageIndex, 2, 1> >* zeroCoords = 0, | 
 |                 std::vector<Matrix<StorageIndex, 2, 1> >* nonzeroCoords = 0) { | 
 |   enum { IsRowMajor = SparseMatrix<Scalar, Opt2, StorageIndex>::IsRowMajor }; | 
 |   sparseMat.setZero(); | 
 |   // sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); | 
 |   int nnz = static_cast<int>((1.5 * density) * static_cast<double>(IsRowMajor ? refMat.cols() : refMat.rows())); | 
 |   sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), nnz)); | 
 |  | 
 |   Index insert_count = 0; | 
 |   for (Index j = 0; j < sparseMat.outerSize(); j++) { | 
 |     // sparseMat.startVec(j); | 
 |     for (Index i = 0; i < sparseMat.innerSize(); i++) { | 
 |       Index ai(i), aj(j); | 
 |       if (IsRowMajor) std::swap(ai, aj); | 
 |       Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0); | 
 |       if ((flags & ForceNonZeroDiag) && (i == j)) { | 
 |         // FIXME: the following is too conservative | 
 |         v = internal::random<Scalar>() * Scalar(3.); | 
 |         v = v * v; | 
 |         if (numext::real(v) > 0) | 
 |           v += Scalar(5); | 
 |         else | 
 |           v -= Scalar(5); | 
 |       } | 
 |       if ((flags & MakeLowerTriangular) && aj > ai) | 
 |         v = Scalar(0); | 
 |       else if ((flags & MakeUpperTriangular) && aj < ai) | 
 |         v = Scalar(0); | 
 |  | 
 |       if ((flags & ForceRealDiag) && (i == j)) v = numext::real(v); | 
 |  | 
 |       if (!numext::is_exactly_zero(v)) { | 
 |         // sparseMat.insertBackByOuterInner(j,i) = v; | 
 |         sparseMat.insertByOuterInner(j, i) = v; | 
 |         ++insert_count; | 
 |         if (nonzeroCoords) nonzeroCoords->push_back(Matrix<StorageIndex, 2, 1>(ai, aj)); | 
 |       } else if (zeroCoords) { | 
 |         zeroCoords->push_back(Matrix<StorageIndex, 2, 1>(ai, aj)); | 
 |       } | 
 |       refMat(ai, aj) = v; | 
 |  | 
 |       // make sure we only insert as many as the sparse matrix supports | 
 |       if (insert_count == NumTraits<StorageIndex>::highest()) return; | 
 |     } | 
 |   } | 
 |   // sparseMat.finalize(); | 
 | } | 
 |  | 
 | template <typename Scalar, int Options, typename Index> | 
 | void initSparse(double density, Matrix<Scalar, Dynamic, 1>& refVec, SparseVector<Scalar, Options, Index>& sparseVec, | 
 |                 std::vector<int>* zeroCoords = 0, std::vector<int>* nonzeroCoords = 0) { | 
 |   sparseVec.reserve(int(refVec.size() * density)); | 
 |   sparseVec.setZero(); | 
 |   for (int i = 0; i < refVec.size(); i++) { | 
 |     Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0); | 
 |     if (!numext::is_exactly_zero(v)) { | 
 |       sparseVec.insertBack(i) = v; | 
 |       if (nonzeroCoords) nonzeroCoords->push_back(i); | 
 |     } else if (zeroCoords) | 
 |       zeroCoords->push_back(i); | 
 |     refVec[i] = v; | 
 |   } | 
 | } | 
 |  | 
 | template <typename Scalar, int Options, typename Index> | 
 | void initSparse(double density, Matrix<Scalar, 1, Dynamic>& refVec, SparseVector<Scalar, Options, Index>& sparseVec, | 
 |                 std::vector<int>* zeroCoords = 0, std::vector<int>* nonzeroCoords = 0) { | 
 |   sparseVec.reserve(int(refVec.size() * density)); | 
 |   sparseVec.setZero(); | 
 |   for (int i = 0; i < refVec.size(); i++) { | 
 |     Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0); | 
 |     if (v != Scalar(0)) { | 
 |       sparseVec.insertBack(i) = v; | 
 |       if (nonzeroCoords) nonzeroCoords->push_back(i); | 
 |     } else if (zeroCoords) | 
 |       zeroCoords->push_back(i); | 
 |     refVec[i] = v; | 
 |   } | 
 | } | 
 |  | 
 | #endif  // EIGEN_TESTSPARSE_H |